ПРИЛОЖЕНИЕ
АВОГАДРО (Avogadro) Амедео (9 августа 1776, Турин-9 июля 1856), итальянский физик и химик, член Туринской АН (1819).Получил юридическое образование в Туринском университете (1792). В 1800 начал самостоятельно изучать физику и математику. С 1806 работал демонстратором в колледже при Туринской академии. С 1809 -- профессор в колледже Верчелли, в 1820-1822 и 1834-1850 заведовал кафедрой математической физики в Туринском университете.
Основные работы посвящены молекулярной физике. В 1811 выдвинул молекулярную гипотезу строения вещества, установил один из газовых законов, названный его именем. Согласно этому закону в одинаковых объемах газов при одинаковых значениях температуры и давления содержится одинаковое количество молекул. Исходя из этого, разработал метод определения молекулярного и атомного весов. Именем Авогадро названа универсальная постоянная -- число молекул в одном моле идеального газа (число Авогадро). Установил количественный атомный состав молекул некоторых веществ, для которых он ранее был определен неправильно (вода, водород, кислород, азот, оксиды азота, хлора и др.). Первым обратил внимание на аналогию в свойствах азота, фосфора. мышьяка и сурьмы. Эти химические элементы впоследствии составили главную подгруппу пятой группы периодической системы. В 20-40-х г.г. 19 века занимался электрохимией, изучал тепловое расширение тел, теплоемкости. Автор четырехтомного труда «Физика весовых тел, или трактат об общей конституции тел» (1837-41), который стал первым руководством по молекулярной физике.
АМПЕР (Ampere) Андре Мари (1775 -- 1836), французский физик, математик, химик, член Парижской АН (1814), иностранный член Петербургской АН (1830), один из основоположников электродинамики. Получил домашнее образование. Основные труды в области электродинамики. Автор первой теории магнетизма. Предложил правило для определения направления действия магнитного поля на магнитную стрелку (правило Ампера). Провел ряд экспериментов по исследованию взаимодействия между электрическим током и магнитом, для которых сконструировал большое количество приборов. Обнаружил действие магнитного поля Земли на движущиеся проводники с током. Открыл (1820) механическое взаимодействие токов и установил закон этого взаимодействия (закон Ампера). Сводил все магнитные взаимодействия к взаимодействию скрытых в телах круговых молекулярных электрических токов, эквивалентных плоским магнитам (теорема Ампера). Утверждал, что большой магнит состоит из огромного количества элементарных плоских магнитов. Последовательно проводил чисто токовую природу магнетизма. Открыл (1822) магнитный эффект катушки с током (соленоида). Высказал идею об эквивалентности соленоида с током и постоянного магнита. Предложил помещать металлический сердечник из мягкого железа для усиления магнитного поля. Высказал идею использования электромагнитных явлений для передачи информации (1820). Изобрел коммутатор, электромагнитный телеграф (1829). Сформулировал понятие «кинематика». Проводил также исследования по философии и ботанике.
В 1785-88 гг. Шарль Огюстен Кулон провел свои классические экспериментальные исследования законов взаимодействия электрических зарядов и магнитных полюсов. Эти опыты были в русле той грандиозной научной программы, которая была намечена трудами самого Ньютона; имея в качестве великого образца закон всемирного тяготения, изучать все возможные типы имеющихся в природе сил.
Многим тогда казалось, что между электричеством и магнетизмом — полный параллелизм: что есть электрические, а есть и магнитные заряды, и у мира электрических явлений есть во всем подобный ему мир явлений магнитных. Открытие Эрстеда многими толковалось тогда так, что под действием тока провод, по которому этот ток протекает, намагничивается, а потому и действует на магнитную стрелку. Ампер выдвинул принципиально новую, радикальную и даже, на первый взгляд, дерзкую идею: никаких магнитных зарядов в природе вообще не существует, есть только электрические заряды, и магнетизм возникает только из-за движения электрических зарядов, т. е. из-за электрических токов. Прошло без малого двести лет с того момента, когда Ампер выступил с этой гипотезой, и, казалось бы, пора разобраться, был ли он прав (и тогда название «гипотеза» делается неуместным), или же от нее нужно отказаться. Первое впечатление: гипотезе Ампера противоречит даже сам факт существования постоянных магнитов: ведь никаких токов, ответственных за возникновение магнетизма, здесь, вроде бы, нет! Ампер возражает: магнетизм порождается огромным числом крошечных электрических атомных контуров тока (можно только поражаться, что такая глубочайшая идея могла появиться в ту пору, когда не только еще не знали ничего об устройстве атомов, но даже еще не существовало и слово «электрон»!) Каждый такой контур выступает как «магнитный листок» — элементарный магнитный двухполюсник. Этим и объясняется, почему магнитные заряды одного знака — «магнитные монополи», в отличие от монополей электрических, в природе не встречаются. Почему же все-таки и поныне «гипотеза»? Ведь уже не раз казалось, что найдены «магниты», в которых электрических зарядов нет. Вот, к примеру, нейтрон. У этой частицы нулевой электрический заряд, но есть магнитный момент. Опять «момент», т. е. опять магнитный двухполюсник, и его появление вновь объясняется в нынешней теории элементарных частиц «микроскопическими» токами, только теперь уже не внутри атома, а внутри нейтрона. Так можно ли уверенно утверждать, что магнетизм всегда порождается движением электрических зарядов? Гипотеза Ампера в такой заостренной формулировке принимается не всеми теоретиками. Больше того, некоторые варианты теории говорят о том, что магнитные монополи («однополюсники») должны проявляться, но только при огромных, недостижимых для нас сегодня энергиях. Гипотеза Ампера явилась важным принципиальным шагом к утверждению идеи о единстве природы. Но она поставила перед исследователями ряд новых вопросов. В первую очередь, потребовалось дать полную и замкнутую теорию взаимодействия токов. Эту задачу с подлинным блеском, действуя как теоретик и как экспериментатор, решил сам Ампер. Чтобы найти, как взаимодействуют токи в различных контурах, ему пришлось сформулировать законы магнитного взаимодействия отдельных элементов тока («Закон Ампера») и воздействия токов на магниты («правило Ампера»). По существу, была создана новая наука об электричестве и магнетизме, и даже термин «Электродинамика» был введен одним из замечательных ученых прошлого, Андре Мари Ампером
АРИСТАРХ Самосский (лат. Aristarchus, греч. Ар�истархос) (около 320 — 250 или 230 до н.э), древнегреческий астроном и математик, впервые выдвинул гипотезу гелиоцентрического устройства мира. Аристарх утверждал, что неподвижное Солнце находится в центре сферы неподвижных звезд, а Земля вращается вокруг своей оси и вместе с тем движется вокруг Солнца по кругу наклонному к экватору. Эта гипотеза не была принята учеными древности, так как Аристарх не представил убедительных доказательств и лишь восемнадцать столетий спустя Коперник доказал его правоту.
В сохранившемся труде Аристарха «О величине и расстоянии Солнца и Луны» дается правильный способ определения расстояния от Солнца и Луны до Земли при помощи угла, составленного линиями от наблюдателя к Солнцу и Луне. Лишь отсутствие точных приборов не позволило Аристарху произвести правильные вычисления. В своих трудах Аристарх много внимания уделял вопросам оптики.
АРИСТОТЕЛЬ (лат. Aristotle) (384 до н. э., Стагира, полуостров Халкидика, Северная Греция — 322 до н. э., Халкис, остров Эвбея, Средняя Греция), древнегреческий ученый, философ, основатель Ликея, учитель Александра Македонского.
Отец Аристотеля — Никомах, был врачом при дворе македонских царей. Он сумел дать сыну хорошее домашнее образование, знание античной медицины. Влияние отца сказалось на научных интересах Аристотеля, его серьезных занятиях анатомией. В 367, в возрасте семнадцати лет, Аристотель отправился в Афины, где стал учеником Академии Платона. Через несколько лет Аристотель сам начал преподавать в Академии, стал полноправным членом содружества философов-платоников. В течении двадцати лет Аристотель работал вместе с Платоном, но был самостоятельным и независимо мыслящим ученым, критически относился к воззрениям своего учителя.
После смерти Платона в 347 Аристотель выходит из Академии и переселяется в город Атарней (Малая Азия), которым правил ученик Платона Гермий. После смерти Гермия в 344, Аристотель жил в Митилене на острове Лесбос, а в 343 македонский царь Филипп II пригласил ученого стать учителем своего сына Александра. После того как Александр взошел на престол, Аристотель в 335 вернулся в Афины, где основал собственную философскую школу.
Местом школы стал гимнасий неподалеку от храма Апполона Ликейского, поэтому школа Аристотеля получила название Ликей. Читать лекции Аристотель любил прогуливаясь с учениками по дорожкам сада. Так появилось еще одно название Ликея — перипатетическая школа (от перипато — прогулка). Представители перипатетической школы помимо философии занимались и конкретными науками (историей, физикой, астрономией, географией).
В 323 после смерти Александра Македонского в Афинах начался антимакедонский мятеж. Аристотеля, как македонца, не оставили в покое. Его обвинили в религиозном непочитании и он был вынужден покинуть Афины. Последние месяцы жизни Аристотель провел на острове Эвбея.
Научная продуктивность Аристотеля была необычайно высокой, его труды охватывали все отрасли античной науки. Он стал основоположником формальной логики, создателем силлогистики, учения о логической дедукции. Логика у Аристотеля — не самостоятельная наука, а методика суждений, применимая к любой науке. Философия Аристотеля содержит учение об основных принципах бытия: действительности и возможности (акт и потенция), о форме и материи, действующей причине и цели (смотри Энтелехия). В основе метафизики Аристотеля лежит учение о принципах и причинах организации бытия. В качестве начала и первопричины всего сущего Аристотель выдвинул понятие субстанционального разума. Для классификации свойств бытия Аристотель выделил десять предикатов (сущность, количество, качество, отношения, место, время, состояние, обладание, действие, страдание), которые всесторонне определяли субъект. Аристотель установил четыре начала (условия) бытия: форма, материя, причина и цель. Главное значение имеет соотношение формы и материи.
В натурфилософии Аристотель следует следующим принципам: Вселенная конечна; все имеет свою причину и цель; постигать природу математикой невозможно; физические законы не имеют всеобщего характера; природа выстроена по иерархической лестнице; следует не объяснять мир, а классифицировать его составляющие с научной точки зрения. Природу Аристотель разделял на неорганический мир, растения, животных и человека. Человека от животных отличает наличие разума. А так как человек представляет собой общественное существо, важное значение в учении Аристотеля имеет этика. Основной принцип аристотелевой этики — разумное поведение, умеренность (метриопатия).
АРХИМЕД (лат. Archimedes, греч. Архимидис) (около 287 до н.э., Сиракузы, Сицилия — 212 до н.э., там же), древнегреческий ученый, математик и механик, основоположник теоретической механики и гидростатики. Разработал предвосхитившие интегральное исчисление методы нахождения площадей, поверхностей и объемов различных фигур и тел. В основополагающих трудах по статике и гидростатике (закон Архимеда) дал образцы применения математики в естествознании и технике. Архимеду принадлежит множество технических изобретений (архимедов винт, определение состава сплавов взвешиванием в воде, системы для поднятия больших тяжестей, военные метательные машины), завоевавших ему необычайную популярность среди современников.
Архимед получил образование у своего отца, астронома и математика Фидия, родственника сиракузского тирана Гиерона II, покровительствовавшего Архимеду. В юности провел несколько лет в крупнейшем культурном центре того времени Александрии Египетской, где познакомился с Эрастосфеном. Затем до конца жизни жил в Сиракузах. Во время Второй Пунической войны (218-201), когда Сиракузы были осаждены войском римского полководца Марцелла, Архимед участвовал в обороне города, строил метательные орудия. Военные изобретения ученого (о них рассказывал Плутарх в жизнеописании полководца Марцелла) в течение двух лет помогали сдерживать осаду Сиракуз римлянами. Архимеду приписывается сожжение римского флота направленными через систему вогнутых зеркал солнечным лучаси, но это недостоверные сведения. Гений Архимеда вызывал восхищение даже у римлян. Марцелл приказал сохранить ученому жизнь, но при взятии Сиракуз Архимед был убит.
Архимеду принадлежит первенство во многих открытиях из области точных наук. До нас дошло тринадцать трактатов Архимеда. В самом знаменитом из них — «О шаре и цилиндре» (в двух книгах) Архимед устанавливает, что площадь поверхности шара в 4 раза больше площади наибольшего его сечения; формулирует соотношение объемов шара и описанного около него цилиндра как 2:3 — открытие, которым он так дорожил, что в завещании просил поставить на своей могиле памятник с изображением цилиндра с вписанным в него шаром и надписью расчета (памятник через полтора века видел Цицерон). В этом же трактате сформулирована аксиома Архимеда (называемая иногда аксиомой Евдокса), играющая важную роль в современной математике.
В трактате «О коноидах и сфероидах» Архимед рассматривает шар, эллипсоид, параболоид и гиперболоид вращения и их сегменты и определяет их объемы. В сочинении «О спиралях» исследует свойства кривой, получившей его имя (см. Архимедова спираль) и касательной к ней. В трактате «Измерение круга» Архимед предлагает метод определения числа , который использовался до конца 17 в., и указывает две удивительно точные границы числа : 3 10/71<<3 1/7. В «Псаммите» («Исчисление песчинок») Архимед предлагает систему счисления, позволявшую записывать сверхбольшие числа, что поражало воображение современников. В «Квадратуре параболы» определяет площадь сегмента параболы сначала с помощью «механического» метода, а затем доказывает результаты геометрическим путем. Кроме того, Архимеду принадлежат «Книга лемм», «Стомахион» и обнаруженные только в 20 веке «Метод» (или «Эфод») и «Правильный семиугольник». В «Методе» Архимед описывает процесс открытия в математике, проводя четкое различие между своими механическими приемами и математическим доказательством.
В физике Архимед ввел понятие центра тяжести, установил научные принципы статики и гидростатики, дал образцы применения математических методов в физических исследованиях. Основные положения статики сформулированы в сочинении «О равновесии плоских фигур». Архимед рассматривает сложение параллельных сил, определяет понятие центра тяжести для различных фигур, дает вывод закона рычага. Знаменитый закон гидростатики, вошедший в науку с его именем (смотри Архимеда закон), сформулирован в трактате «О плавающих телах». Существует предание, что идея этого закона посетила Архимеда, когда он принимал ванну; с возгласом «Эврика!» он выскочил из ванны и нагим побежал записывать пришедшую к нему научную истину.
Архимед построил небесную сферу — механический прибор, на котором можно было наблюдать движение планет, Солнца и Луны (описан Цицероном; после гибели Архимеда планетарий был вывезен Марцеллом в Рим, где на протяжении нескольких веков вызывал восхищение); гидравлический орган, упоминаемый Тертуллианом как одно из чудес техники (изобретение органа некоторые приписывают александрийскому инженеру Ктесибию). Считается, что еще в юности, во время пребывания в Александрии, Архимед изобрел водоподъемный механизм (смотри Архимедов винт), котроый был применен при осушении залитых Нилом земель. Он построил также прибор для определения видимого (углового)диаметра Солнца (о нем Архимед рассказывает в трактате «Псаммит») и определил значение этого угла.
БЕККЕРЕЛЬ (Becquerel) Антуан Анри (15 декабря 1852, Париж — 25 августа 1908, Ле-Круазик, Бретань, Франция), французский физик, сын Александра Эдмона Беккереля. Открыл (1896) естественную радиоактивность солей урана. Профессор Парижского национального естественно-исторического музея (1892) и Политехнической школы (1895). Нобелевская премия (1903, совместно с П. Кюри и М. Склодовской-Кюри).
Возможно, об Антуане Беккереле осталась бы лишь память как о весьма квалифицированном и добросовестном экспериментаторе, но не более, если бы не то, что произошло 1 марта в его лаборатории. Тогда он исследовал люминесценцию солей урана, и, закончив работу, завернул образец — узорчатую металлическую пластинку, покрытую урановой солью — в черную, плотную, непрозрачную бумагу и, положив ее на коробку с фотопластинками, поместил все это в плотно закрывающийся ящик стола.
Вынув позже коробку с фотопластинками, он, скорее всего, лишь по привычке добросовестно все проверять, проявил их и был озадачен, обнаружив, что они по какой-то причине оказались засвеченными — на фотопластинке проявилось изображение узорчатой металлической пластинки. Но почему? Попасть на пластинки свет заведомо не мог, значит, понял Беккерель, действие было вызвано какими-то другими лучами.
О том, что существуют невидимые для глаза, но вызывающие почернение фотопластинки лучи, физики уже знали. За полгода до этого совершилось сенсационное открытие Рентгена. Рентгеновские лучи стали выдающимся событием в физике. Может быть и по этой причине доклад Беккереля 2 марта 1896 года в Парижской АН был встречен с большим интересом. 12 мая он рассказал о сделанном им открытии перед более широкой аудиторией, в Музее естественной истории, а затем, в августе 1900 и на Международном физическом конгрессе, который собрался в Париже, чтобы обсудить основные итоги физики 19 века. К тому времени Беккерель уже успел понять, что излучение не является ни люминесценцией, ни чем-либо другим, уже знакомым физикам. Оно не менялось ни при физических (нагревание, давление и т. д.), ни при химических воздействиях, заметить уменьшение его интенсивности не удавалось и, казалось, его энергия черпается из неиссякаемого источника.
Уже было установлено, что неведомые лучи не только вызывают почернение фотопластинок, но и производят разнообразные другие действия (включая биологические: на теле самого Беккереля от находившегося в его кармане препарата образовались долго не заживавшие язвы; с тех пор препараты стали помещаться в свинцовые коробочки). Открытие Рентгена, а затем и Беккереля породило нечто подобное «лучевой эпидемии». Возможно, из множества заявок на открытие такого рода больше других привлекли внимание физиков выступления профессора Блондо из Нанси, который не только «видел» некие новые лучи, но даже сумел провести их спектральный анализ. Правда, другие исследователи (в числе которых, заметим, оказался и Жан Беккерель) не смогли подтвердить этих сообщений, и вскоре, благодаря вмешательству блестящего американского экспериментатора Роберта Вуда все закончилось скандальным разоблачением. Финал был, увы, трагичен: Блондо который, скорее всего, был жертвой самовнушения, не перенеся удара, обрушившегося на него после шумного успеха (Парижская АН успела даже наградить его золотой медалью и премией в 20 тыс. франков), сошел с ума и вскоре умер.
БЕРНУЛЛИ (Bernoulli) Иоганн (1667-1748), брат Якоба Бернулли, отец Даниила Бернулли; иностранный почетный член Петербургской АН (1725), профессор математики Гронингенского (с 1695) и Базельского (с 1705) университетов. Был деятельным сотрудником немецкого ученого Г. Лейбница в разработке дифференциального и интегрального исчислений, развил методы решения обыкновенных дифференциальных уравнений. Ему принадлежат также исследования по механике (теория удара, движение тел в сопротивляющейся среде, учение о живой силе) и работы по вариационному исчислению.
БЛЭК Джозеф (1728-99), шотландский химик и физик, иностранный почетный член Петербургской АН (1783). Открыл (1754) диоксид углерода. Установил (1757) существование скрытых теплот плавления и парообразования. Ввел (1760) понятие теплоемкости. Способствовал ниспровержению теории флогистона.
БОЙЛЬ (Boyle) Роберт (1627-91), английский химик и физик, один из учредителей Лондонского королевского общества. Сформулировал (1661) первое научное определение химического элемента, ввел в химию экспериментальный метод, положил начало химическому анализу. Способствовал становлению химии как науки. Установил (1662) один из газовых законов (закон Бойля — Мариотта).
БОЛЬЦМАН (Boltzmann) Людвиг (1844-1906), австрийский физик, один из основателей статистической физики и физической кинетики, иностранный член-корреспондент Петербургской АН (1899). Вывел функцию распределения, названную его именем, и основное кинетическое уравнение газов. Дал (1872) статистическое обоснование второго начала термодинамики. Вывел один из законов теплового излучения (закон Стефана — Больцмана).
Основной темой научных исследований Больцмана была молекулярно-кинетическая теория. Наибольшие достижения связаны с работами по кинетической теории газов и статистическому обоснованию термодинамики. Конечно, эта проблематика появилась в физике и до Больцмана. Так, Джеймс Клерк Максвелл еще в 1859 установил закон распределения молекул по скоростям, а в 1867 показал статистическую природу второго начала термодинамики. Больцман был одним из немногих, вполне осознавших значение работ Максвелла. Он обобщил закон распределения скоростей молекул газов на газы, находящиеся во внешнем силовом поле, и установил формулу Больцмана распределения (1868-71). Применяя статистические методы к кинетической теории идеальных газов, Больцман вывел кинетическое уравнение газов. Главнейшей заслугой Больцмана является исследование необратимых процессов и статистическая трактовка второго начала термодинамики. В 1872 Больцман ввел понятие H-функции, характеризующее состояние замкнутой макроскопической системы, и доказал, что с течением времени H-функция не может возрастать ( H-теорема). Отождествив H-функцию с энтропией S (с обратным знаком), Больцман связал энтропию с W — термодинамической вероятностью:
S= klnW.
Это соотношение дало статистическое обоснование второму началу термодинамики и является основой статистической физики. Универсальная постоянная k в честь ученого называется Больцмана постоянной. Приведенное уравнение выгравировано на памятнике Больцману в Вене.
Больцман был верным последователем и приверженцем идей Максвелла и в области электромагнитной теории. Ему принадлежат первые экспериментальные работы по проверке достоверности выводов максвелловской теории электромагнитного поля. Он провел измерения диэлектрической проницаемости газов и твердых тел и установил ее связь с оптическим показателем преломления. Эти результаты были изложены в «Лекциях о максвелловской теории электричества и света» (1891-93). (Преклонение Больцмана перед гением Максвелла было безгранично. Об его уравнениях он писал: «Не божество ли начертало эти законы?...»). Больцману принадлежат труды по изучению поляризации диэлектриков, теории термоэлектричества, диамагнетизма и др. Больцман, в частности, разработал теорию эффекта Холла. Больцманом внесен существеннейший вклад в теорию флуктуаций, предложен принципиально новый подход к теории необратимых процессов, впервые применены принципы термодинамики к описанию электромагнитного излучения, теоретически выведено выражение для давления света. Хенрик Антон Лоренц, один из крупнейших физиков-теоретиков, которого по справедливости называют отцом электронной теории, назвал работу Больцмана о зависимости теплового излучения от температуры «настоящей жемчужиной теоретической физики».
Интересы Больцмана охватывали почти все области физики и частично математики.
БОР (Bohr) Нильс (1885-1962), датский физик, один из создателей современной физики. Основатель (1920) и руководитель Института теоретической физики в Копенгагене (Институт Нильса Бора); создатель мировой научной школы; иностранный член АН СССР (1929). В 1943-45 работал в США. Создал теорию атома, в основу которой легли планетарная модель атома, квантовые представления и предложенные им Бора постулаты. Важные работы по теории металлов, теории атомного ядра и ядерных реакций. Труды по философии естествознания. Активный участник борьбы против атомной угрозы. Нобелевская премия (1922).
Проблема атомного номера элементов. Закон смещения
Первым важным достижением Бора в лаборатории Резерфорда было то, что он понял: химические свойства определяются числом электронов в атоме, а, значит, зарядом ядра, а не его массой, и это и объясняет существование изотопов. Поскольку альфа-частица — это ядро гелия, имеющее заряд +2, то при альфа-распаде, когда эта частица вылетает из ядра, «дочерний» элемент должен располагаться в таблице Менделеева на две клеточки левее «материнского», а при бета-распаде, когда из ядра вылетает электрон — на одну клеточку правее. Так был открыт «закон радиоактивных смещений». Но за этим открытием последовали и другие, гораздо более важные. Они касались самой модели атома.
Эту модель часто называют «планетарной» — в ней, подобно тому как планеты вращается вокруг Солнца, электроны движутся вокруг ядра. Но такой атом не может быть устойчивым: под действием кулоновского притяжения ядра каждый электрон движется с ускорением, а ускоренно движущийся заряд, согласно законам классической электродинамики, должен излучать электромагнитные волны, теряя при этом энергию. Количественный расчет показывает, что такая «радиационная неустойчивость» атома катастрофична: примерно за стомиллионную долю секунды все электроны должны были бы потерять энергию и упасть на ядро. Но в действительности ничего такого не происходит, и многие атомы вполне стабильны. Возникла проблема, которая могла показаться неразрешимой. И она действительно не могла быть разрешена без привлечения радикальных новых идей. Именно такие идеи и были выдвинуты Бором.
Он постулировал, что (вопреки законам механики и электродинамики) в атомах существуют такие орбиты, двигаясь по которым электроны не излучают. По Бору, орбита является стабильной, если момент количества движения находящегося на ней электрона кратен h / 2π, где h— постоянная Планка. Излучение же происходит только при переходе электрона с одной устойчивой орбиты на другую, и вся освобождающаяся при этом энергия уносится одним квантом излучения. Энергия такого кванта, равная произведению частоты ν на h, в соответствии с законом сохранения энергии, равна разности начальной и конечной энергии электрона («Правило частот»). Таким образом, Бор предложил соединить модельные представления Резерфорда с идеей квантов, впервые высказанной Планком в 1900. Такое соединение в корне противоречило всем положениям и традициям классической теории. Но, в то же время, эта классическая теория не отвергалась полностью: электрон рассматривался как материальная точка, движущаяся по законам классической механики, но только из всех орбит «разрешенными» объявлялись лишь те, которые отвечают «условиям квантования».
Энергии электрона на таких орбитах получаются обратно пропорциональными квадратам целых чисел — номеров орбит. Привлекая «правило частот», Бор пришел к выводу, что частоты излучения должны быть пропорциональны разности обратных квадратов целых чисел. Эта закономерность действительно была уже установлена спектроскопистами, но не находила дотоле своего объяснения.
Бор объяснил не только спектр простейшего из атомов — водорода, но и гелия, в том числе, и ионизованного, показал, как учесть влияние содвижения ядра, предугадал структуру заполнения электронных оболочек, что позволило понять физически природу периодичности химических свойств элементов — периодическую таблицу Менделеева. За эти работы Бор в 1922 был удостоен Нобелевской премии.
Модель Резерфорда—Бора была очевидным образом непоследовательна. В ней объединялись и положения классической теории, и то, что им явно противоречило. Чтобы устранить эти противоречия, потребовался радикальный пересмотр многих основных положений теории. Здесь и прямые заслуги Бора, и роль его научного авторитета, да и просто личного влияния были очень велики. Именно Бор понял, что для создания физической картины процессов микромира нужен иной подход, нежели для «мира больших вещей» и он был одним из основных творцов этого подхода. Он ввел понятие о неконтролируемом воздействии измерительных процедур, о «дополнительных» величинах — таких, что чем точнее определяется одна из них, тем большая неопределенность оказывается у другой. С именем Бора связана вероятностная (так называемая копенгагенская) интерпретация квантовой теории и рассмотрение многих ее «парадоксов». Немалое значение имели здесь дискуссии Бора с Эйнштейном, так и не примирившимся с вероятностным истолкованием квантовой механики. Для понимания закономерностей микромира и их соотношения с законами классической (т.е. неквантовой) физики немаловажное значение имеет сформулированный Бором принцип соответствия.
БОШКОВИЧ (Боскович) Руджер Иосип (1711-87), физик, математик и астроном, иностранный почетный член Петербургской АН (1760). Родился в Дубровнике (Далмация), работал в Италии и Франции. В основном труде «Теория натуральной философии...» (1758) развил качественную теорию строения вещества и высказал гипотезу о зависимости характера (притяжения или отталкивания) сил взаимодействия частиц от расстояния между ними
БРОЙЛЬ (де Брольи) (de Broglie) Луи (1892-1987), иностранный член АН СССР (1958), один из создателей квантовой механики, выдвинул (1924) идею о волновых свойствах материи. Труды по строению атомного ядра, распространению электромагнитных волн в волноводах, истории и методологии физики. Нобелевская премия (1929).
Луи де Бройль, потомок старинной французской аристократической фамилии, герцог. Под влиянием старшего брата, известного физика, члена Парижской академии наук Мориса де Бройля, окончив Парижский университет (1913), после возвращения из армии, он обратился к теоретической физике.
К 1924 опубликовал три кратких заметки, а затем и защитил докторскую диссертацию, выдвинув идею об универсальном корпускулярно-волновом дуализме. В классической физике материя имела двойственную природу: дискретные материальные точки — «механическая материя» — и непрерывное, занимающее большие области в пространстве, не имеющее никаких черт дискретности электромагнитное поле, в том числе электромагнитные волны — «лучистая материя». Вслед за тем как после работ М. Планка, Эйнштейна, Комптона и других выдающихся физиков выяснилось, что излучению также присущи черты дискретности, после того, как было обнаружено наличие у него квантовых свойств, могло показаться, что непрерывность вообще устранена из физических представлений о материи, и двойственная физическая картина мира уступила место единой дискретной картине. Это единство опять было утрачено после появление теории атома Бора: хотя в ней электроны по-прежнему выглядели как материальные точки, движущиеся по орбитам, но самому этому движению приписывались (при помощи условий квантования) черты дискретности.
Опять двойственная картина: квантованное движение электронов и классическая электродинамика при описании излучения. По-видимому тогда, в начале двадцатых годов, после впечатляющих успехов теории Бора, эта двойственность мало кого волновала. Ярчайшим исключением на этом фоне стал тридцатилетний французский теоретик Луи де Бройль.
Занимаясь исследованием рентгеновских лучей, он все больше стал склоняться к мысли, что...нужно найти общее синтезирующее понятие, которое позволило бы объединить точку зрения волновой теории с точкой зрения корпускулярной». В трех докладах, представленных Парижской академии наук, де Бройль изложил то, что теперь называют идеей корпускулярно-волнового дуализма. Согласно этой идее, и корпускулярные, и волновые черты присущи всем видам материи без исключения. В соответствии с этой идеей де Бройль предположил, что установленные прежде только для фотонов соотношения между такими «типично волновыми» величинами как частота ν и длина волны λ и «корпускулярными» величинами — энергией E и импульсом p.
E = hν и p= h/ λ
нужно рассматривать как универсальные: приложимые к любым объектам.
Эксперимент
О том, как физики восприняли гипотезу де Бройля, достаточно красноречиво свидетельствует, например, письмо Эйнштейна к Максу Борну, в котором, в частности, говорится о диссертации де Бройля: «Прочтите ее! Хотя и кажется, что ее писал сумасшедший, написана она солидно». Однако, верховный арбитр в науке — эксперимент — уже в 1927 подтвердил обоснованность идеи о корпускулярно-волновой природе электронов. Американские физики К. Дэвиссон и Джермер и, независимо от них, английский физик Дж. П. Томсон открыли дифракцию электронов на монокристаллах. Что же касается макроскопических, т.е. имеющих большие массы тел, то их волновые свойства не обнаруживаются по простой причине: в природе не существует подходящих «решеток», т. е. объектов с пространственными неоднородностями достаточно малых размеров. Благодаря де Бройлю, в физику вошло принципиально новое представление о двуединой корпускулярно-волновой природе материи. Появился даже новый термин «волночастица», призванный подчеркнуть эту двуединость.
Волны де Бройля и индетерминизм
Обнаружение волновых свойств у электронов (а затем и других видов материи) породило мнение, что вся материя имеет чисто-волновую природу. Наиболее полно эта идея проявилась в работах австрийского физика-теоретика Эрвина Шредингера, именем которого названо основное уравнение квантовой (волновой!) механики. Он полагал, что любая материя существует в виде волн, подобных классическим электромагнитным, хотя и несколько отличающихся от них.
То, что волны де Бройля неправильно толковать как классические, было выяснено в напряженных дискуссиях с физиками «копенгагенской школы» во главе с Бором, и было выдвинуто принципально новое, вероятностное (иначе — статистическое) толкование. Волновое уравнение Шредингера, согласно этому толкованию, относится к комплексной (ненаблюдаемой) величине — амплитуде вероятностей. Квадрат модуля этой величины дает картину распределения вероятностей обнаружить частицу в различных точках пространства. Так, если частица — свободная, то эта вероятность (в отличие от амплитуды!) вообще не зависит от координат и от времени, т. е. одинаково вероятно обнаружить частицу в любой точке. Но это вовсе не означает, что частица «равномерно размазана» по всему пространству: можно говорить лишь о вероятности ее обнаружения. Таким образом, описание материи приобретает принципиально новые черты, оно становится статистическим, т.е. вероятностным.
Вероятностное описание не было новостью для физиков. В классической (доквантовой) теории оно привлекалось (например, в молекулярной теории) когда объект исследования был настолько сложным, что полное однозначное (детерминистическое) предсказание его эволюции становилось невозможным из-за действия неконтролируемых случайных факторов. В квантовой теории, т.е. в физике микромира, положение было иным: утверждалось, что даже например, в каждом единичном акте рассеяния электрона на кристалле, принципиально невозможно предсказать, на каком месте экрана он обнаружится, а можно лишь предсказать вероятности этого.
Надо сказать, что такая вероятностная интерпретация квантовой теории принималась не всеми. Имея в виду вывод о принципиальной непредсказуемости результатов измерений, Эйнштейн писал: «Господь Бог не играет в кости!», да и сам де Бройль до конца дней пытался найти пути к спасению детерминистической физики. И то, что эти попытки не могли увенчаться успехом, не умаляет заслуги перед наукой этого великого ученого
БУГЕР (Bouguer) Пьер (1698-1758), французский ученый, один из основателей фотометрии. Разработал методы измерения силы света. Установил (1729) закон ослабления света (закон Бугера—Ламберта —Бера). В 1735-43 руководил градусными измерениями в Перу
БЭКОН Фрэнсис (22 января 1561, Лондон — 9 апреля 1626, Хайгет), английский государственный деятель и философ, родоначальник английского материализма. Лорд-канцлер при короле Якове I. В трактате «Новый органон» (1620) провозгласил целью науки увеличение власти человека над природой, предложил реформу научного метода — очищение разума от заблуждений («идолов», или «признаков»), обращение к опыту и обработка его посредством индукции, основа которой — эксперимент. Автор утопии «Новая Атлантида».
ВЕБЕР, немецкие ученые, братья
1) Эрнст Генрих (1795-1878), анатом и физиолог, иностранный член-корреспондент Петербургской АН (1869 ). Один из основоположников экспериментальной психологии. Исследования физиологии органов чувств (слуха, зрения, кожных ощущений) легли в основу закона Вебера — Фехнера. Совместно с братом Эдуардом обнаружил тормозящее влияние блуждающего нерва на сердце.
2) Вильгельм Эдуард (1804-91), физик, иностранный член-корреспондент Петербургской АН (1853). Труды по электричеству и магнетизму; разработал совместно с К. Ф. Гауссом абсолютную систему электрических и магнитных единиц. Его именем названа единица магнитного потока.
3) Эдуард (1806-71), физиолог. Установил, что сила мышцы зависит от площади ее поперечного сечения; определил скорость распространения пульсовой волны.
ВОЛЬТА (Volta) Алессандро (1745-1827), итальянский физик и физиолог, один из основоположников учения об электричестве. Создал первый химический источник тока (1800, вольтов столб). Открыл контактную разность потенциалов.В честь него названа единица разности потенциалов электрического поля — вольт.
В 1791 г. в Болонье вышло в свет сочинение профессора анатомии Луиджи Гальвани, в котором автор поведал об удивительных результатах 11-летних экспериментальных исследований. Все началось с того, писал Гальвани, что, препарировав лягушку, «...я положил ее без особой цели на стол, где стояла электрическая машина. Когда один из моих слушателей слегка коснулся нерва концом ножа, лапка содрогнулась как бы от сильной конвульсии. Другой из присутствовавших заметил, что это случалось только в то время, когда из кондуктора машины извлекалась искра». Впоследствии было замечено, что сокращение лапок наблюдается во время гроз и даже просто при приближении грозового облака.
Пораженный этими явлениями, Гальвани пришел к выводу о существовании особого рода «животного электричества», подобного тому, что уже было известно у электрических рыб, например, у скатов. Не всем опытам Гальвани мог дать объяснение. Так, оставалось непонятным, почему лапки препарированных лягушек по-разному сокращались в зависимости от того, дужкой из какого металла соединяли их позвоночники с нервами на лапке (наибольший эффект получался, если эта дужка была составлена из кусочков различных металлов). Но интерес все это вызывало тем больший, что электричество вообще «вошло в моду» и даже начало признаваться целебным.
Естественно, что Вольта, заинтересовавшись опытами Гальвани, проверил их, но пришел к принципиально новым выводам. Вольта понял, что ни о каком «животном электричестве» говорить не приходится, и что лапки лягушек (как и многие другие ткани животных) выступали лишь в роли чувствительных электрометров. Он доказал на опыте, что электризация происходит при соприкосновении различных веществ, в том числе, и металлов. Конечно, во времена Вольта еще почти ничего не было известно о строении веществ, в частности, металлов. Это сегодня физики уже знают, что есть такая величина — работа выхода, т. е. та энергия, которую необходимо сообщить электрону, чтобы вырвать его из вещества. Для цинка, например, эта работа выхода меньше, чем для меди, и поэтому при соприкосновении цинковой и медной пластинок некоторому количеству электронов «энергетически выгодно» переходить из цинка в медь, отчего первая заряжается положительно, а вторая отрицательно.
Вольта всего этого знать не мог, но проницательность и умение понимать язык природы позволили ему почти на два столетия опередить свое время и даже указать, как нужно расположить металлы в ряд, построенный таким образом, чтобы наибольший эффект соответствовал металлам, более удаленным друг от друга. Это было огромной заслугой Вольта, но даже она не была главной. Заметив, что прослойка из влажной ткани (особенно если пропитать ее раствором соли, или кислоты) может усилить электризацию пары различных металлов, Вольта пришел к своему самому важному изобретению. Поняв, что из пар металлов, разделенных такими прослойками, можно составлять эффективные цепочки, он положил начало новой эпохе не только в физике, но и в технике. После долгого периода, когда имелись только электростатические источники зарядов и токов, появился принципиально новый источник; его называют теперь гальваническим, хотя термин «вольтов столб» исторически более оправдан. Новый источник открывал невиданные ранее возможности создания токов различных типов (к примеру, «вольтова дуга», долгое время бывшая одним из самых ярких осветительных приборов).
К этому нельзя не добавить, что в наши дни и открытия Гальвани заново обрели исключительную значимость: зародилась наука, которую можно назвать электрофизиологией, и она показывает, какую важнейшую роль в живых организмах играют токи и электромагнитные поля.
ГАЛЛЕЙ (Халли) (Halley) Эдмунд (1656-1742), английский астроном и геофизик. Составил первый каталог звезд Южного неба, открыл собственное движение звезд (1718). Вычислил орбиты св. 20 комет. Предсказал время нового появления (1758) кометы 1682 (т. н. кометы Галлея ), доказав наличие периодических комет. Исследовал земной магнетизм.
ГАЛИЛЕЙ (Galilei) Галилео (1564-1642), итальянский ученый, один из основателей точного естествознания. Боролся против схоластики, считал основой познания опыт. Заложил основы современной механики: выдвинул идею об относительности движения, установил законы инерции, свободного падения и движения тел по наклонной плоскости, сложения движений; открыл изохронность колебаний маятника; первым исследовал прочность балок. Построил телескоп с 32-кратным увеличением и открыл горы на Луне, 4 спутника Юпитера, фазы у Венеры, пятна на Солнце. Активно защищал гелиоцентрическую систему мира, за что был подвергнут суду инквизиции (1633), вынудившей его отречься от учения Н. Коперника. До конца жизни Галилей считался «узником инквизиции» и принужден был жить на своей вилле Арчетри близ Флоренции. В 1992 папа Иоанн Павел II объявил решение суда инквизиции ошибочным и реабилитировал Галилея.
Важнейшим достижением Галилея в динамике было создание принципа относительности, ставшего основой современной теории относительности. Решительно отказавшись от представлений Аристотеля о движении, Галилей пришел к выводу, что движение (имеются в виду только механические процессы) относительно, то есть нельзя говорить о движении, не уточнив, по отношению к какому «телу отсчета» оно происходит; законы же движения безотносительны, и поэтому, находясь в закрытой кабине (он образно писал «в закрытом помещении под палубой корабля»), нельзя никакими опытами установить, покоится ли эта кабина или же движется равномерно и прямолинейно («без толчков», по выражению Галилея).
Термоскоп фактически явился прообразом термометра, и чтобы подойти к его изобретению, Галилей должен был радикально пересмотреть существующие в то время представления о тепле и холоде.
Первые известия об изобретении в Голландии подзорной трубы дошли до Венеции уже в 1609. Заинтересовавшись этим открытием, Галилей значительно усовершенствовал прибор. 7 января 1610 произошло знаменательное событие: направив построенный телескоп (примерно с 30-кратным увеличением) на небо, Галилей заметил возле планеты Юпитер три светлые точки; это были спутники Юпитера (позже Галилей обнаружил и четвертый). Повторяя наблюдения через определенные интервалы времени, он убедился, что спутники обращаются вокруг Юпитера. Это послужило наглядной моделью кеплеровской системы, убежденным сторонником которой сделали Галилея размышления и опыт.
Были и другие важные открытия, которые еще больше подрывали доверие к официальной космогонии с ее догмой о неизменности мироздания: появилась новая звезда; изобретение телескопа позволило обнаружить фазы Венеры и убедиться, что Млечный Путь состоит из огромного числа звезд. Открыв солнечные пятна и наблюдая их перемещение, Галилей совершенно правильно объяснил это вращением Солнца. Изучение поверхности Луны показало, что она покрыта горами и изрыта кратерами. Даже этот беглый перечень позволил бы причислить Галилея к величайшим астрономам, но его роль была исключительной уже потому, что он произвел поистине революционный переворот, положив начало инструментальной астрономии в целом.
ГАЛЛЕ (Galle) Иоганн Готфрид (1812-1910), немецкий астроном. Основные труды по исследованиям комет и метеоров. Уточнил солнечный параллакс по наблюдениям астероидов, открыл 3 кометы, обнаружил Нептун по координатам, вычисленным У. Леверье (1846).
ГАЛЬВАНИ (Galvani) Луиджи (1737-98), итальянский анатом и физиолог, один из основателей учения об электричестве, основоположник экспериментальной электрофизиологии. Первым исследовал электрические явления при мышечном сокращении («животное электричество»). Обнаружил возникновение разности потенциалов при контакте металла с электролитом.
ГАУСС (Gaub) Карл Фридрих (1777-1855), немецкий математик, иностранный член-корреспондент (1802) и иностранный почетный член (1824) Петербургской АН. Для творчества Гаусса характерна органическая связь между теоретической и прикладной математикой, широта проблематики. Труды Гаусса оказали большое влияние на развитие алгебры (доказательство основной теоремы алгебры), теории чисел (квадратичные вычеты), дифференциальной геометрии (внутренняя геометрия поверхностей), математической физики (принцип Гаусса), теории электричества и магнетизма, геодезии (разработка метода наименьших квадратов) и многих разделов астрономии.
ГЕЙЗЕНБЕРГ (Хайзенберг) (Heisenberg) Вернер (1901-76), немецкий физик-теоретик, один из создателей квантовой механики. Предложил (1925) матричный вариант квантовой механики; сформулировал (1927) принцип неопределенности; ввел концепцию матрицы рассеяния (1943). Труды по структуре атомного ядра, релятивистской квантовой механике, единой теории поля, теории ферромагнетизма, философии естествознания. Нобелевская премия (1932).
Не будет преувеличением сказать, что со времени своего возникновения физика всегда оперировала наглядными и по возможности простыми моделями — сначала это были системы из классических материальных точек, а потом к ним добавилось электромагнитное поле, которое, в сущности, использовало также представления из арсенала механики сплошных сред. Дискуссии между Бором и Гейзенбергом привели к осознанию необходимости подвергнуть ревизии те образы, те понятия, которыми оперирует теория, дабы выделить из них действительно лишь те, которые выступают на опыте. Что такое, например, орбита электрона, можно ли ее наблюдать? Если учесть двойственную, корпускулярно-волновую природу электрона, то можно ли говорить о его траектории вообще? Можно ли построить такую теорию, в которой рассматривались бы только действительно наблюдаемые на опыте величины?
Эту задачу решил в 1925 двадцатичетырехлетний Гейзенберг, предложив так называемую матричную механику (Нобелевская премия 1932). Вскоре после этого Эрвином Шредингером был предложен другой, «волновой» вариант квантовой теории, эквивалентный «матричному». У квантовой теории появилась новая математическая база, но физическая и теоретико-познавательная сторона дела еще нуждалась в анализе.
Результатом такого анализа явились соотношения неопределенностей Гейзенберга и принцип дополнительности Бора. Проанализировав процедуры измерения координат и импульсов, Гейзенберг пришел к выводу, что получить для них одновременно и точно определенные значения координат и импульсов, принципиально невозможно. Если координата х определяется с разбросом Δх, а проекции импульса на ось х — с разбросом Δpх, то эти разбросы (или «неопределенности») связаны соотношением Δх Δрх ≥ h /2 π, где h — постоянная Планка.
Укажем еще одно соотношение ΔЕ Δt ≥h / 2π, связывающее неопределенность энергии ΔЕ состояния с продолжительностью Δt его существования.
В квантовой теории физическим величинам ставятся в соответствие «операторы», т. е. символы, обозначающие определенные математические действия («операции»). Если порядок действия пары операторов переставим, то соответствующие им физические величины можно определить одновременно, если же операторы непереставимы, то это невозможно, и чем точнее определяется одна из таких «дополнительных» величин, тем больше неопределенность в определении второй.
Соотношения неопределенностей (принцип неопределенности) подчеркивают принципиальное отличие описания состояния систем в классической и в квантовой теории и необходимость статистического, т.е. вероятностного описания в последней. Появление идеи дополнительности ознаменовало качественно новый шаг в теории познания.
ГЕЙ-ЛЮССАК (Gay-Lussac) Жозеф Луи (1778-1850), французский химик и физик, иностранный почетный член Петербургской АН (1829). Открыл газовые законы, названные его именем. Открыл бор (1808, совместно с Л. Тенаром). Получил (1811) безводную синильную кислоту и исследовал (1815) ее количественный состав, открыл (1815) дициан. Построил первые диаграммы растворимости (1819). Усовершенствовал методы элементного и объемного химического анализа, технологию производства серной кислоты (башня Гей-Люссака). Совместно с М. Шеврелем получил (1825) патент на изготовление стеариновых свечей.
ГЕЛЬМГОЛЬЦ (Helmholtz) Герман Людвиг Фердинанд (1821-94), немецкий ученый, иностранный член-корреспондент Петербургской АН (1868). Автор фундаментальных трудов по физике, биофизике, физиологии, психологии. Впервые (1847) математически обосновал закон сохранения энергии, показав его всеобщий характер. Разработал термодинамическую теорию химических процессов, ввел понятия свободной и связанной энергий. Заложил основы теорий вихревого движения жидкости и аномальной дисперсии. Автор основополагающих трудов по физиологии слуха и зрения. Обнаружил и измерил теплообразование в мышцах, изучил процесс сокращения мышц, измерил скорость распространения нервного импульса. Сторонник физиологического идеализма.
ГЕРАКЛИТ Эфесский (лат. Heraclitus, греч. Ир�аклитос) (около 550 до н.э., Эфес, Малая Азия — около 480 до н.э.), древнегреческий философ, один из крупнейших представителей ионийской школы философии. Первоначалом сущего считал огонь. Создатель концепции непрерывного изменения, учения о «логосе», который истолковывался как «бог», «судьба», «необходимость», «вечность». Гераклиту приписывалось знаменитое изречение «нельзя дважды войти в одну и ту же реку». Наряду с Пифагором и Парменидом Гераклит определил основы античной и всей европейской философии. Выявляя всестороннюю загадочность знакомого мира мифа, обычая, традиционной мудрости, Гераклит открывает само бытие как загадку.
Коренной житель Эфеса, сын Блосона, Гераклит принадлежал к древнему аристократическому роду, восходящему к основателю Эфеса Андроклу. Благодаря происхождению Гераклит обладал рядом «царских» привилегий и потомственным жреческим саном при храме Артемиды Эфесской. Однако в его годы жизни власть в Эфесе уже не принадлежала аристократам. Философ не участвовал в общественной жизни города, он отказался от своих титулов, резко отрицательно отзывался о городских порядках и презрительно относился к «толпе». По его словам, «эфесцы заслуживают того, чтобы их перевешали всех поголовно» за то, что они изгнали его друга Гермодора, «сказавши: «Среди нас никто да не будет наилучшим»». Законы города он считал столь безнадежно плохими, что отказал согражданам в просьбе дать им новые, заметив, что лучше играть с детьми, чем участвовать в государственных делах.
Гераклит не покидал Эфеса и ответил отказом на приглашения афинян и персидского царя Дария. По некоторым свидетельствам, Гераклит был учеником Ксенофана и Гиппаса-пифагорейца, по другим же — не был ничьим учеником, но все «узнал от себя самого». Многочисленные анекдоты о смерти Гераклита основаны на некоторых его изречениях, превратно истолкованных и передаваемых понаслышке.
Главный труд Гераклита – книга «О природе» сохранилась в отрывках, но обширно цитируется в работах позднейших античных философов (Платона, Аристотеля и др.). Эта книга состоит из трех частей: о природе, о государстве и о боге, и отличается оригинальностью содержания, образностью и афористичностью языка. Вместе с тем книга трудна для понимания, за что уже в античные времена Гераклит получил прозвище Скутинос (Темный).
Основная идея Гераклита заключается в том, что в природе нет ничего постоянного. Все в природе подобно движению реки, в которую нельзя войти дважды. Одно постоянно переходит в другое, меняя свое состояние. Символическим выражением всеобщего изменения для Гераклита является огонь. Огонь есть непрерывное самоуничтожение, он живет своей смертью. Гераклит ввел новое философское понятие – логос (слово), подразумевая под этим принцип разумного единства мира, который упорядочивает мир при помощи смешения противоположных начал. Противоположности находятся в вечной борьбе, порождая новые явления («раздор есть отец всего»).Человеческий разум и логос имеют общую природу, но логос существует в вечности и управляет космосом, частицей которого является человек.
Традиция сохранила образ Гераклита-мудреца, высокоумного одиночки, презиравшего людей (и тех, кто славился в качестве мудрецов), за непонимание того, что они сами говорят и делают. Истолковав учение Гераклита в духе расхожей мировой скорби о скоротечности жизни и всего в мире, популярная философия видела в нем прототип «плачущего мудреца», подобно тому как в Демокрите находила тип «мудреца смеющегося». Мудрость Гераклита, отрешенная от многознающего невежества людей и живущая в соседстве с простой мудростью бытия, запечатлена характерной сценой: некие странники, пожелавших взглянуть на прославленного мудреца, останавливаются на пороге убогого жилища, смущенные зрелищем невзрачного человека, который греется у очага. «Входите, слышат они, и здесь тоже обитают боги» (Аристотель, «О частях животных»).
Гераклит изъяснялся столь сжато и многозначно. Его изречения часто подобны фольклорным загадкам или речениям оракула, который, по словам Гераклита, «...и не говорит, и не утаивает, а подает знаки». Одни полагают, что, написав свое сочинение («Музы» или «О природе») нарочито темно и отдав его на хранение в храм Артемиды Эфесской, Гераклит будто бы хотел уберечь его от невежественной толпы. Другие видят здесь именно ясно выраженную темноту и загадочность того самого, что подлежит сказыванию. Аристотель объясняет темноту речений Гераклита их синтаксической неопределенностью, вследствие чего высказывание можно прочитать по-разному. Изречения Гераклита в самом деле обнаруживают продуманное строение, особую поэтику. Они насыщены аллитерациями, игрой слов, внутренне связаны хиазмами, инверсиями, бессоюзным синтаксисом или паратаксисом, характерным для строя внутренней речи, речи, обращенной не столько к другим, сколько к себе, слушающей себя, готовой к переосмыслению, к возвращению в стихию мыслящего молчания. Когда трагик Еврипид спросил Сократа о сочинении Гераклита, тот ответил: «Что понял великолепно, чего не понял, думаю, тоже, а впрочем, нужен прямо-таки делосский ныряльщик».
Вопрос, на который отвечает Гераклит, как все есть одно, или что такое (одно) бытие (множественного) сущего? Самый известный ответ на этот вопрос состоит в тезисе «все течет, ничто не покоится». В существовании многого течет (проистекает, происходит) единое бытие. Быть — значит постоянно становиться, перетекать из формы в форму, обновляться, подобно тому, как та же самая река несет новые и новые воды. Другой метафорой бытия как постоянно происходящего оказывается у Гераклита горение, огонь. Строй самодовлеющего мира («космос») есть «вечноживой огонь, мерно возгорающийся, мерно угасающий». Единое бытие словно разгорается множеством сущего, но и гаснет в нем, равно как и сущее, разгораясь бытием, гаснет в его единстве. Еще одна метафора того же самого — игра: каждый раз новая партия той же самой игры. Становление и постоянство, множественность существующего и единство бытия совмещаются, когда поток мыслится впадающим в самого себя, возгорание и угасание, начало и конец совпадают. Единое бытие множества, мыслимое как поток, впадающий в самого себя, или горение, гаснущее в меру разгорания, точнее (и загадочней) передается уяснением целого как внутренней взаимосвязи противоположного: бытие (течение) ночи и дня есть взаимооперетекание и внутреннее соприсутствие, жизнь живет противоборством смерти, но этим же «живет» и смерть; взаимны бессмертие бессмертных и смертность смертных; противоборствующее этим самым противоборством прочно сцеплено в единую гармонию существования, которая подобна «гармонии лука и лиры». Мир как противоборство противоположного Гераклит передает образом мира-схватки, мира-сражения («полемос»). «Нужно знать, что сражение всеобще, и тяжба правда, и все становится тяжбой и взаимообязанностью». «Война отец всех, царь всех: одних она объявляет богами, других людьми, одних творит рабами, других свободными».
Образ всеобщего сражения, которым охвачено все сущее в целом и в котором каждое сущее схвачено в том, что собственно оно есть, оказывается также и образом понимания всего и каждого. Таков всеобщий ум в отличие от частных недо-разумений, единая и единственная мудрость, соответствующая складу самого сущего, тому, как множество сущего слагается в единство бытия. Этот склад, «слог» подобен тому, как из множества слов слагается единое слово поэмы, космос речи, несущей в себе «образ мира в слове явленный» (Б. Пастернак). Отсюда тема «логоса », имеющая, судя по некоторым фрагментам, особое значение для Гераклита. Сочинение («логос») Гераклита открывалось словами: «Относительно этого логоса сущего всегда непонятливы люди...». Аристотель поясняет на этом примере «темноту» Гераклита: если «всегда» относить к «сущему», речь, кажется, идет о «логосе» самого сущего, если же к «непонятливы», то имеется в виду просто сочинение Гераклита. Но именно эта двусмыслица и важна для Гераклита. Греческое слово «логос» значит «слово», «речь», «сочинение», «отчет», но так же и само подотчетное, «положение вещей», «соотношение сил». «Логос»-слово о целом призвано передать, как все сложено в целостность «логоса»-бытия. «Не мне, а «логосу» внимая, мудро согласиться: все есть одно». «Логос» — это форма, то общее, что позволяет передать склад вещей соответствующим складом речи. Отсюда «темнота» изречений Гераклита: бытие, происходящее в противоборстве вещей, схватывается мыслью, живущей противоречием речей.
ГЕРИКЕ (Guericke) Отто фон (1602-86), немецкий физик. Изобрел (ок. 1650) воздушный насос и осуществил с ним ряд опытов (в т. ч. опыт с «магдебургскими полушариями») для доказательства существования атмосферного давления. Построил электрическую машину, обнаружил электрическое отталкивание.
ГЕРЦ (Херц) (Hertz) Генрих Рудольф (1857-1894), немецкий физик, один из основоположников электродинамики. Экспериментально доказал (1886-89) существование электромагнитных волн (используя вибратор Герца) и установил тождественность основных свойств электромагнитных и световых волн. Придал уравнениям Максвелла симметричную форму. Открыл внешний фотоэффект (1887). Построил механику, свободную от понятия силы.
Теория Максвелла и эксперименты Герца.
1873 год занимает в истории физики особое, исключительное место. В этом году появился гениальный «Трактат об электричестве и магнетизме» Максвелла.
Тогда лишь немногие осознали, что наступила новая эра в науке об электричестве и магнетизме, а, наверное, и во всей физике.
Завершилось формирование современной классической электродинамики, начало которому положили труды Майкла Фарадея, о котором Максвелл говорил: «Фарадей своим мысленным оком видел силовые линии, пронизывающие все пространство. Там, где математики видели центры напряжения сил дальнодействия, Фарадей видел промежуточный агент. Где они не видели ничего, кроме расстояния, удовлетворяясь тем, что находили закон распределения сил, действующих на электрические флюиды, Фарадей искал сущность реальных явлений, протекающих в среде».
В этих словах — стержень того, что отличает концепцию близкодействия, т. е. взаимодействия через посредство поля, от господствовавших ранее (в духе традиции, заложенной законом всемирного тяготения Ньютона) представлений о дальнодействии — мгновенном непосредственными действии на расстоянии.
Максвелл писал, что он лишь придал идеям Фарадея математическую форму. В действительности, конечно, вклад Максвелла был значительно весомее, но оценено это было не сразу. И одним из важных пунктов был вопрос об электромагнитных волнах.
Из теории Максвелла вытекало, что электромагнитное поле распространяется с конечной скоростью. Уже это само по себе приводило к выводу, что оно может «отрываться» от порождающих его источников — зарядов и токов, т. е. излучаться, разлетаться в виде волн. Замечательно, что еще в 1832 Фарадей передал в Лондонское Королевское общество запечатанное письмо, прочитанное лишь через 100 лет, в котором были следующие слова: «Я пришел к заключению, что на распространение магнитного взаимодействия требуется время, которое, очевидно, окажется весьма незначительным. Я полагаю также, что электрическая индукция распространяется таким же образом. Я полагаю, что распространение магнитных сил от магнитного полюса похоже на колебания на взволнованной водной поверхности...».
Максвеллу принадлежит гениальная догадка, что свет также имеет электромагнитную природу, что это — частный случай электромагнитных волн. И в 1886-88 Герц осуществил свои эксперименты, доказавшие реальность электромагнитных волн.
Аппаратура, которой пользовался Герц, может показаться теперь более чем простой, но тем замечательнее полученные им результаты.
Источниками электромагнитного излучения у него были искры в разрядниках. Электромагнитные волны от разрядников вызывали искровые разряды между шариками в «приемниках», расположенных в нескольких метрах контурах, настроенных в резонанс. Герцу удалось не только обнаружить волны, в том числе, и стоячие, но и исследовать скорость их распространения, отражение, преломление и даже поляризацию. Все это очень напоминало оптику, с тем только (весьма существенным!) отличием, что длины волн были почти в миллиард раз больше.
Опыты Герца сыграли существенную роль в становлении современной электродинамики. Но не зря говорят: «Нет ничего более практичного, чем хорошая теория!». Повторять сегодня, когда электромагнитные волны буквально пронизывают все, что работы Герца оказали на всю жизнь человечества колоссальное влияние, было бы излишне, но эти работы получали высокие оценки и его современников. В 1889 Итальянское общество наук в Неаполе наградило его медалью имени Маттеучи, Парижская академия наук — премией Лаказа, а Венская императорская академия — премией Баумгартнера. Через год Лондонское королевское общество награждает Герца медалью Румфорда, а в 1861 Королевская академия в Турине — премией Бресса.
Герц подтвердил выводы максвелловской теории о том, что скорость распространения электромагнитных волн в воздухе равна скорости света, установил тождественность основных свойств электромагнитных и световых волн. Герц изучал также распространение магнитных волн в проводнике и указал способ измерения скорости их распространения. Память о Генрихе Герце осталась не только как о великом экспериментаторе, но и как о глубоком теоретике. В развитие теории Максвелла Герц придал уравнениям электродинамики симметричную форму, которая показывает взаимосвязь между электрическими и магнитными явлениями. Работы Герца по электродинамике сыграли огромную роль в развитии науки и техники. Его труды обусловили возникновение беспроволочного телеграфа, радио и телевидения.
В 1886-87 Герц впервые наблюдал и дал описание внешнего фотоэффекта. Герц разрабатывал теорию резонаторного контура, изучал свойства катодных лучей, исследовал влияние ультрафиолетовых лучей на электрический разряд. Последние четыре года его жизни были посвящены эксперименту с газовым разрядом и работой над книгой «Принципы механики, изложенные в новой связи», в которой изложен оригинальный подход к этой науке. Здесь Герц дал вывод общих теорем механики и ее математического аппарата, исходя из единого принципа (принцип Герца или принцип наименьшей кривизны, один из вариационных принципов механики).
ГИББС Джозайя Уиллард (1839-1903), американский физик-теоретик, один из создателей термодинамики и статистической механики. Разработал теорию термодинамических потенциалов, открыл общее условие равновесия гетерогенных систем — правило фаз, вывел уравнения Гиббса — Гельмгольца, Гиббса — Дюгема, адсорбционное уравнение Гиббса. Установил фундаментальный закон статистической физики — распределение Гиббса. Предложил графическое изображение состояния трехкомпонентной системы (треугольник Гиббса). Заложил основы термодинамики поверхностных явлений и электрохимических процессов. Ввел понятие адсорбции.
ГИЛЬБЕРТ (Гилберт) (Gilbert) Уильям (1544-1603), английский физик и врач. В труде «О магните, магнитных телах и о большом магните — Земле» (1600) впервые последовательно рассмотрел магнитные и многие электрические явления.
ГРИМАЛЬДИ Франческо Мария (1618-63), итальянский физик и астроном. Открыл дифракцию света (опубликовал 1665). Совместно с Дж. Б. Риччоли составил карту Луны и ввел названия лунных образований, употребляющиеся и ныне.
ГРИН Джордж (1793-1841), английский математик и физик. Труды по интегральному исчислению, теории электричества и магнетизма, теории упругости. Заложил основы теории потенциала
ГУК (Хук) (Hooke) Роберт (1635-1703), английский естествоиспытатель, разносторонний ученый и экспериментатор, архитектор. Открыл (1660) закон, названный его именем. Высказал гипотезу тяготения. Сторонник волновой теории света. Улучшил и изобрел многие приборы, установил (совместно с Х. Гюйгенсом) постоянные точки термометра. Усовершенствовал микроскоп и установил клеточное строение тканей, ввел термин «клетка».
В 1672 членом Лондонского Королевского общества был избран Исаак Ньютон, но вовсе не как величайший из физиков-теоретиков, а как создатель удачного зеркального телескопа (Гук, заметим, также изготовил телескоп-рефлектор).
В течение многих лет отношения между Ньютоном и Гуком почти постоянно оставались напряженными. Иногда расхождения касались частных вопросов. Так, в 1679 возник спор «о фигуре кривой, которую будет описывать падающее тело». Но чаще они затрагивали фундаментальные проблемы. Из них особо резкими были те, что касались представлений о физической природе света. Ньютон выдвинул и отстаивал теорию, согласно которой свет представляет собой поток особых частичек — световых корпускул. Гук же полагал, что свет состоит из очень быстрых и коротких вибрационных движений некоторой прозрачной среды, через которую он проходит. Таким образом, уже здесь возникла дискуссия между сторонником корпускулярного и волнового механизма. Со временем этот спор достиг такого накала, что Ньютон принял твердое решение: пока жив Гук, не публиковать никаких работ по оптике. Тяжело переживали обе стороны разгоревшийся в 1686 спор о приоритете в вопросе о законе всемирного тяготения. По-видимому, Гук действительно сам понял, что сила притяжения обратно пропорциональна квадрату расстояния между телами, и он обвинил автора знаменитых «Начал» в плагиате. Он написал в Королевское общество, что давно знал о притяжении между телами, но загруженность другими работами не позволила ему заняться этой проблемой обстоятельнее.
Впрочем, многие исследователи считают, что даже если он и знал «закон обратных квадратов», однако лишь Ньютон не только правильно определил закон взаимодействия, но, сформулировав основные законы механики, объяснил на их основе движения планет, приливы и отливы океана и вообще открыл новую страницу в книге науки. Что же касается Гука, то он действительно не только постоянно интересовался проблемой тяготения, но и провел начиная с 1671 серию опытов по его изучению, несмотря на огромную перегруженность работой.
ГЮЙГЕНС (Хейгенс) (Huygens) Христиан (1629-95), нидерландский ученый. В 1665-81 работал в Париже. Изобрел (1657) маятниковые часы со спусковым механизмом, дал их теорию, установил законы колебаний физического маятника, заложил основы теории удара. Создал (1678, опубликовал 1690) волновую теорию света, объяснил двойное лучепреломление. Совместно с Р. Гуком установил постоянные точки термометра. Усовершенствовал телескоп; сконструировал окуляр, названный его именем. Открыл кольцо у Сатурна и его спутник Титан. Автор одного из первых трудов по теории вероятностей (1657).
Круг научных интересов Гюйгенса продолжал расширяться. Он увлекается трудами Архимеда по механике и Декарта (а позже и других авторов, в том числе, и англичан Ньютона и Гука) по оптике, но не перестает заниматься и математикой. В механике главные его исследования относятся к теории удара и к проблеме конструирования часов, имевшей в то время исключительно важное прикладное значение и занимавшей всегда в работе Гюйгенса одно из центральных мест.
Первые его достижения в оптике также можно назвать «прикладными». Вместе с братом Константином он занимается усовершенствованием оптических инструментов и достигает в этой области значительных успехов (эта деятельность не прекращается много лет; в 1682 г. он изобретает трехлинзовый окуляр, носящий поныне его имя. Занимаясь усовершенствованием телескопов, Гюйгенс, однако, в «Диоптрике» написал: «...человек: который бы смог изобрести подзорную трубу, основываясь лишь на теории, без вмешательства случая, должен был бы обладать сверхчеловеческим умом»).
Новые инструменты позволяют делать важные наблюдения: 25 марта 1655 г. Гюйгенс открывает Титан — самый большой спутник Сатурна (кольцами которого он интересовался уже давно).В 1657 г. появляется еще один труд Гюйгенса «О расчетах при игре в кости» — одна из первых работ по теории вероятностей. Еще одно сочинение «Об ударе тел» он пишет для своего брата.
Вообще пятидесятые годы 17 века были временем наибольшей активности Гюйгенса. Он приобретает известность в научном мире. В 1665 он избирается членом Парижской академии наук.
Гюйгенс с неослабевающим интересом изучал оптические труды Ньютона, но не принял его корпускулярную теорию света. Гораздо ближе ему были взгляды Роберта Гука и Франческо Гримальди, считавших, что свет имеет волновую природу.
Но представление о свете-волне сразу же порождало множество вопросов: как объяснить прямолинейное распространение света, его отражение и преломление? Ньютон давал на них убедительные, казалось бы, ответы. Прямолинейность — это проявление первого закона динамики: световые корпускулы движутся равномерно и прямолинейно, если на них не подействуют какие-то силы. Отражение тоже объяснялось как упругое отскакивание корпускул от поверхностей тел. Несколько сложнее дело обстояло с преломлением, но и здесь Ньютон предложил объяснение. Он считал, что когда световая корпускула подлетает к границе тела, на нее начинает действовать сила притяжения со стороны вещества, сообщающая корпускуле ускорение. Это приводит к изменению направления скорости корпускулы (преломление) и ее величины; следовательно, по Ньютону, скорость света в стекле, к примеру, больше, чем в вакууме. Этот вывод важен хотя бы уже тем, что он допускает экспериментальную проверку (позже опыт опроверг мнение Ньютона).
Гюйгенс, как и упоминавшиеся выше его предшественники, считал, что все пространство заполнено особой средой — эфиром, и что свет — это волны в этом эфире. Пользуясь аналогией с волнами на поверхности воды, Гюйгенс пришел к такой картине: когда фронт (т. е. передний край) волны доходит до некоторой точки, т. е. колебания достигают этой точки, то эти колебания становятся центрами расходящихся во все стороны новых волн, и движение огибающей всех этих волн и дает картину распространения фронта волны, а перпендикулярное к этому фронту направление и есть направление распространения волны. Так, если фронт волны в пустоте в какой-то момент плоский, то он остается плоским всегда, что и соответствует прямолинейному распространению света. Если же фронт световой волны достигает границы среды, то каждая точка на этой границе становится центром новой сферической волны, и, построив огибающие этих волн в пространстве как над, так и под границей, нетрудно объяснить как закон отражения, так и закон преломления (но при этом приходится принять, что скорость света в среде в n раз меньше, чем в вакууме, где это n — тот самый показатель преломления среды, который входит в недавно открытый Декартом и Снеллиусом закон преломления).
Из принципа Гюйгенса вытекает, что свет, как и любая волна, может и огибать препятствия. Это представляющее принципиальный интерес явление действительно существует, но Гюйгенс счел, что «боковые волночки», возникающие при таком огибании, не заслуживают большого внимания.
Представления Гюйгенса о свете были далеки от современных. Так, он считал, что световые волны — продольные, т.е. что направления колебаний совпадают с направлением распространения волны. Это может показаться тем более странным, что сам Гюйгенс, по-видимому, уже имел представление о явлении поляризации, которое можно понять только рассматривая поперечные волны. Но не это главное. Принцип Гюйгенса оказал решающее влияние на наши представления не только об оптике, но и о физике любых колебаний и волн, занимающей теперь одно из центральных мест в нашей науке.
Д'АЛАМБЕР (D'Alembert) Жан Лерон (1717-83), французский математик, механик и философ-просветитель, иностранный почетный член Петербургской АН (1764). В 1751-57 вместе с Д. Дидро редактор «Энциклопедии». Сформулировал правила составления дифференциальных уравнений движения материальных систем (см. Д'Аламбера принцип). Обосновал теорию возмущения планет. Труды по математическому анализу, теории дифференциальных уравнений, теории рядов, алгебре.
ДАЛЬТОН (Долтон) (Dalton) Джон (6 сентября 1766 — 1844), английский химик и физик, создатель химического атомизма. Установил (1803) закон кратных отношений, ввел понятие «атомный вес», первым определил атомные веса (массы) ряда элементов. Открыл газовые законы, названные его именем. Первым (1794) описал дефект зрения, которым страдал сам, позже названный дальтонизмом.
ДЕКАРТ (Descartes) Рене (латинизированное — Картезий; Cartesius) (1596-1650), французский философ, математик, физик и физиолог. С 1629 в Нидерландах. Заложил основы аналитической геометрии, дал понятия переменной величины и функции, ввел многие алгебраические обозначения. Высказал закон сохранения количества движения, дал понятие импульса силы. Автор теории, объясняющей образование и движение небесных тел вихревым движением частиц материи (вихри Декарта). Ввел представление о рефлексе (дуга Декарта). В основе философии Декарта — дуализм души и тела, «мыслящей» и «протяженной» субстанции. Материю отождествлял с протяжением (или пространством), движение сводил к перемещению тел. Общая причина движения, по Декарту, — Бог, который сотворил материю, движение и покой. Человек — связь безжизненного телесного механизма с душой, обладающей мышлением и волей. Безусловное основоположение всего знания, по Декарту, — непосредственная достоверность сознания («мыслю, следовательно, существую»). Существование Бога рассматривал как источник объективной значимости человеческого мышления. В учении о познании Декарт — родоначальник рационализма и сторонник учения о врожденных идеях. Основные сочинения: «Геометрия» (1637), «Рассуждение о методе...» (1637), «Начала философии» (1644).
ДЕМОКРИТ (лат. Demokritos, греч. Дим�окритос) (около 460 до н.э., Абдеры, Фракия — около 360 до н.э.), древнегреческий философ, основоположник атомистического учения. По Демокриту, существуют только атомы и пустота. Атомы — неделимые материальные элементы (геометрические тела, «фигуры»), вечные, неразрушимые, непроницаемые, различаются формой, положением в пустоте, величиной; движутся в различных направлениях, из их «вихря» образуются как отдельные тела, так и все бесчисленные миры; невидимы для человека; истечения из них, действуя на органы чувств, вызывают ощущения. В этике развил учение об атараксии.
Дата его рождения еще в античности была спорным вопросом: согласно Аполлодору — 460/57, согласно засвидетельствованному доксографией мнению Трасилла, издателя сочинений Демокрита, — 470. Демокрит был родом из богатой семьи. Согласно передаваемой Диогеном Лаэртием легенде, учился у каких-то магов и халдеев, подаренных персидским царем Ксерксом отцу Демокрита за то, что тот угостил проходившее через Фракию персидское войско обедом. По смерти отца истратил свою часть богатого наследства на путешествия, посетив Персию и Вавилон, Индию и Египет. Некоторое время жил в Афинах, где инкогнито слушал Сократа; возможно, встречался с Анаксагором. Традиционно считается, что наибольшее влияние на Демокрита оказал атомист Левкипп, однако именно с именем Демокрита связывают возникновение атомизма как универсального философского учения, включающего физику и космологию, эпистемологию, психологию и этику; учения, возникшего как синтез проблематики трех древнейших философских школ Греции: милетской, элейской и пифагорейской.
Демокриту приписывали авторство более 70 сочинений; их названия приводит Диоген Лаэртий (согласно изданию Трасилла) в порядке тетралогий: по этике, физике (отдельно упоминается серия трактатов «о причинах»), по математике, языку и литературе, различным прикладным наукам, в том числе медицине; также ему приписывались «О священных надписях в Вавилоне» и «Халдейская книга» — в русле устойчивого «халдейского» мифа, связанного с его образованием и путешествиями. Издание Трасилла начиналось с книги «Пифагор» (этический раздел) — среди философов, которые оказали влияние на Демокрита, это имя одно из важнейших. Наиболее часто упоминаются сочинения «Большой мирострой» и «Малый мирострой», вероятно, посвященные соответственно устроению космоса и человека; первое из них приписывали также Левкиппу. Помимо текстов самого Демокрита, последующая доксография опиралась в основном на историко-философские сочинения Аристотеля и Теофраста; много сведений о Демокрите сохранили скептики, считавшие его одним из предтеч пирроновского скептицизма.
В античности Демокрит был известен не только глубиной своего учения, но и красотой слога своих произведений — об этом говорят Цицерон («ясный» Демокрит, в отличие от «темного» Гераклита), Тимон из Флиунта (Демокрит — «пастырь слов»), а также Дионисий Галикарнасский, из всех греческих философов отметивший Демокрита, Платона и Аристотеля как наиболее красноречивых. Приметами его стиля были: краткость, ритмическая организация фразы, аллитерации, ассонансы, неологизмы, широкое использование риторических антитез: атомы и пустота, макрокосм-Вселенная и микрокосм-человек, то, что есть, и то, чего нет.
Главная антитеза плюралистической онтологии Демокрита — атомы и пустота. Атом («неделимая сущность») есть мельчайшее тело, неделимое по той же причине, по какой неделимо «бытие» Парменида: деление предполагает наличие пустоты, но внутри атома по определению пустоты нет. Как и бытие у Парменида, атомы Демокрита вечны и неизменны. Введение атома традиционно понимается как реакция на проблему деления до бесконечности, обсуждавшуюся Зеноном Элейским; если бы атомов не было, процесс деления любого физического тела был бы бесконечен, и мы получили бы одну конечную вещь, состоящую из бесконечного количества частей, что абсурдно. Пустота в системе Демокрита выступает как принцип дискретности, множества и движения атомов, а также как их «вместилище». Называя пустоту «небытием», Демокрит явно отказался от элейского постулата о несуществовании небытия, однако понятия бытия и небытия включены у него в более общее понятие «то, что на самом деле», благодаря которому реальность признавалась и за пустотой (не-бытием). Атом мыслится в ряду: бытие, нечто (неологизм Демокрита), тело, полнота. Экспликация семантического ряда «атом», таким образом, такова: быть — значит быть чем-то, быть чем-то — значит быть телом, быть телом — значит быть полным (плотным). Пустота соотнесена с понятиями: небытие, ничто («нуль»), бесконечность. Атомы и пустота существуют на равном основании, «не более «нечто», чем «ничто»», — этот принцип «исономии» (равноправия) является универсальным в системе Демокрита.
Все атомы, число которых бесконечно, вечно движутся, даже внутри твердых тел они совершают колебательные движения («трясутся во все стороны»). Первопричиной этого движения являются соударения атомов, начавшиеся в вихревом космогенезе — космос Демокрита полностью механистически детерминирован.
В согласии с законом сохранения бытия («из ничего ничего не бывает») возникновение и уничтожение сложных тел происходит путем соединения и разъединения атомов. Четыре элемента физического мира — огонь, воздух, вода и земля — тоже состоят из атомов. Только атомам огня Демокрит приписывал определенную форму — шарообразную, об остальных трех элементах известно, что у них форма одинаковая, но величина разная: самые большие атомы земли, самые мелкие у воздуха. Эти три элемента представляют собой смесь атомов всех форм, по этой причине они могут взаимопревращаться: путем выделения более крупных атомов вода может превратиться в воздух, или земля — в воду (критику этого воззрения с замечанием о том, а как же тогда возможен обратный процесс, см.: Аристотель. О небе. III, 4). Расхождения в свидетельствах относятся к вопросу о том, имеют ли атомы вес: согласно Аристотелю и Теофрасту, вес атомов Демокрита пропорционален их величине, Аэтий и Цицерон отрицают наличие у атомов веса.
Бесконечные по числу атомы непрерывно движутся в бесконечной пустоте; сталкиваясь друг с другом и сцепляясь благодаря неровностям своих форм, они «переплетаются» и образуют бесчисленные миры (космосы). Наш космос образовался благодаря некоему спонтанному «Вихрю» (ср. то же у Анаксимандра и Анаксимена), в котором произошла первичная сортировка атомов — подобное к подобному, причем более крупные атомы оказались в центре, и из них произошла Земля. Вокруг нее первоначально вращалась «влажная и грязеобразная» оболочка, которая постепенно высыхала и влажная материя уходила вниз, а сухая от трения воспламенялась, и из нее формировались звезды. Земля находится в центре космоса согласно принципу «исономии» — «нет причины, почему бы она устремилась скорее в одну, чем в другую сторону» (фр. 379; 403).
Демокрит одним из первых указал на зависимость качеств вещей от способа их познания, т. е. от наличия наблюдателя. Все понятия, составляющие язык нашего описания внешнего мира не соответствуют ничему «поистине», оттого все наше познание, по существу, конвенционально. По обычаю сладость, по обычаю горечь, по обычаю холод, цвет, теплота, на самом же деле — атомы и пустота. В таком же значении слово «обычай» до Демокрита использовал Эмпедокл, говоря об условности таких привычных слов как «рождение» и «гибель», в то время как первоэлементы на самом деле вечны. По Демокриту, раз у атомов нет качеств (цвет, запах, вкус и т. д.), то этих качеств нет и у вещей, ибо «из ничего ничего не бывает». Все качества, по Демокриту, сводимы к формально-количественным различиям атомов: тело, состоящее из «круглых и умеренно больших» атомов, кажется сладким, а из «округленных, гладких, косых и малых по величине» — горьким, и т. д. Качества образуются в ходе акта восприятия, причина их возникновения — взаимодействие атомов души и так или иначе развернувшихся атомов предмета. Поэтому различия в восприятии обусловлены как изменчивостью предмета (один и тот же атом, «повернувшись», может восприниматься и как кислый, и как сладкий), так и изменчивостью субъекта (больной воспринимает не так, как здоровый, ибо у него другая температура организма). Отсюда программный скептицизм в теории познания: «На самом деле мы ничего ни о чем не знаем».
Чувственное восприятие Демокрит объяснял с помощью «истечений» от тел: от поверхности тел отлетает некая материальная пленка, имеющая форму воспринимаемого тела («видик», eidolon), проникает в глаза, а затем в душу, в которой отпечатывается — так возникают наши представления (ср. аналогичное учение о материальных истечениях у Эмпедокла).
Душа-псюхе, как и огонь, состоит из мельчайших атомов шарообразной формы, поэтому она придает телу тепло и движение (шар наиболее подвижная из всех фигур); при этом атомы души и тела «перемешаны». Демокрит не вводил специальных различий между душой и умом, и процесс мышления объяснял также через «отпечатывание образов».
Демокрит допускал существование богов, считая их состоящими из атомов разумными существами, очень большими и очень долго живущими, однако не вечными. От них, как и от всего телесного, тоже исходят пленки-«идолы», причем одни «добрые», а другие «злые»; они предвещают будущее «своим видом и произносимыми звуками», чаще всего эти образы залетают в нас во сне через поры тела. Главный итог рассуждений Демокрита о богах тот, что бояться их не следует, но попросить о благотворном влиянии — весьма предусмотрительно. Такое объяснение бытия богов, по замечанию Цицерона, граничит с отрицанием их существования, и в античности у Демокрита была устойчивая репутация атеиста, тем более что традиционную веру в богов и судьбу он связывал с суевериями и страхом смерти.
Этика Демокрита — продолжение его атомистической физики: как атом есть полное и самодостаточное бытие, так и человек есть самодостаточное бытие, тем более счастливое, чем более замкнутое на себе самом. Для выражения своего понимания счастья Демокрит придумал несколько терминов: «благодушие», «благосостояние», «бесстрашие», «невозмутимость», использовал также и традиционные термины «гармония» и «размеренность». Центральное понятие его этики — эвтюмия, которой была посвящена отдельная книга. Учение о благодушии-эвтюмии находится в связи с критикой Демокритом традиционной религии и верований в судьбу (тюхе). Мудрец умеет радоваться тому, что имеет, не завидуя чужому богатству и славе, он стремится к справедливым и законным делам. Отчетливый мотив радости, передаваемый термином, не означает отождествления эвтюмии и удовольствия: «Эвтюмия не тождественна удовольствию, как ошибочно полагают некоторые; она есть такое состояние, при котором душа спокойна и неколебима, не терзается никакими страхами, суевериями или прочими переживаниями».
Основная часть сохранившихся фрагментов Демокрита относится именно к этике, но в настоящем виде сложно судить, насколько близко каждое высказывание передает слова самого Демокрита. Признается, что собрание моральных наставлений у Стобея содержит в основном аутентичный материал, хотя помещено под именем «Демократа». Это яркие образцы афористической моралистики, пользовавшиеся устойчивой популярностью на протяжении веков: «Лучше думать перед тем, как действовать, чем после», «Любящие порицать неспособны к дружбе», «Быть верным долгу в несчастии — великое дело», и т. д., всего около 480 изречений («гном»).
В историю философии Демокрит вошел как основоположник атомистики. Сущность его атомистического мировоззрения состоит в том, что бытие состоит из совокупности мельчайших, неделимых материальных частиц — атомов, которые находятся в пустоте. Все воспринимаемое органами чувств возникает из соединения атомов. Рождение и смерть обусловлены соединением атомов и их распадом. Демокрит полагал, что движение бытия во времени совершается по некоей необходимости или судьбе, которая непостижима, а для человека тождественна случайности. Вместе с тем, Демокрит призывал постигать причину любого явления. В качестве способа познания Демокрит признавал только умозрительное умозаключение. Идею атомизма ученый последовательно применял во всех своих исследованиях: в математике, физике, астрономии, биологии, психологии, культуре, политике, логике.
В основу космогонических представлений Демокрита положена концепция о множественности миров во Вселенной, время для него не имеет начала, так как означает изменение бытия, которое происходит вечно. Демокрит уподоблял человеческий организм космосу и называл его микрокосмом. Он признавал существование богов в виде соединений огненных атомов, но отрицал их бессмертность. В эстетике Демокрит, по-видимому, первым выявил грань между прикладными искусствами, требующими лишь наличия навыков, и художественным творчеством, невозможным без вдохновения. В этике философ развил учение об атараксии. Есть сведения, что Демокрит, используя опыт своих путешествий, составил географическую карту известных ему стран. В политике он был сторонником демократического устройства общества.
Традиционно считается, что Демокрит был учителем Протагора и, соответственно, повлиял на формирование релятивистских учений софистов. Также традиционно (во многом благодаря эпикурейской историографии) он считается одним из источников формирования скептической традиции — влияние на Пиррона через Метродора Хиосского и Анаксарха. Учение Демокрита считается высшей стадией древнегреческого материализма и получило дальнейшее развитие в философии Эпикура.
ДЖОУЛЬ (Joule) Джеймс Прескотт (1818-89), английский физик. Экспериментально обосновал закон сохранения энергии, определил механический эквивалент тепла. Установил закон, названный законом Джоуля — Ленца. Открыл (совместно с У. Томсоном) эффект, названный эффектом Джоуля — Томсона.
ДИРАК (Dirac) Поль Адриен Морис (1902-1984), английский физик, один из создателей квантовой механики, иностранный член-корреспондент АН СССР (1931). Разработал квантовую статистику (статистика Ферми — Дирака); релятивистскую теорию движения электрона (уравнение Дирака, 1928), предсказавшую позитрон, а также аннигиляцию и рождение пар. Предложил метод вторичного квантования. Заложил основы квантовой электродинамики и квантовой теории гравитации. Нобелевская премия (1933, совместно с Э. Шредингером).
ДЭВИ (Дейви) (Davy) Гемфри (Хамфри) (1778-1829), английский химик и физик, один из основателей электрохимии, иностранный почетный член Петербургской АН (1826). Получил электролизом водород и кислород (из воды), K, Na, Ca, Sr, Ba, Mg и Li. Описал электрическую дугу. Предложил водородную теорию кислот. Открыл обезболивающее действие гемиоксида азота. Изобрел безопасную рудничную лампу.
ДЮФЕ (Dufay, Du Fay) Шарль Франсуа (1698-1739), французский физик. Открыл (1733-1734) существование двух родов электричества и установил, что одноименно заряженные тела отталкиваются, а разноименно — притягиваются.
ЕВКЛИД (умер между 275 и 270 до н. э.), древнегреческий математик. Работал в Александрии в 3 в. до н. э. Главный труд «Начала» (15 книг), содержащий основы античной математики, элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объемов, включавшего элементы теории пределов, оказал огромное влияние на развитие математики. Работы по астрономии, оптике, теории музыки.
ЗЕЕБЕК (Seebeck) Томас Иоганн (1770-1831), немецкий физик. Открыл термоэлектричество (эффект Зеебека).
ИБН СИНА (латинизир. Авиценна, Avicenna,) (ок. 980-1037), ученый, философ, врач, музыкант. Жил в Ср. Азии и Иране, был врачом и везиром при разных правителях. В философии продолжал традиции арабского аристотелизма, отчасти неоплатонизма. Основные философские сочинения — «Книга исцеления», «Книга указаний и наставлений» и др. — содержат также естественно-научные воззрения, музыкально-теоретические положения Ибн Сины. Трактаты Ибн Сины были необычайно популярны на Востоке и на Западе; энциклопедия теоретической и клинической медицины «Канон врачебной науки» (в 5 ч.) — обобщение взглядов и опыта греческих, римских, индийских и среднеазиатских врачей — была много веков обязательным руководством, в т. ч. в средневековой Европе (ок. 30 латинских изданий).
КАВЕНДИШ (Cavendish) Генри (1731-1810), английский физик и химик. Исследовал свойства многих газов, получил водород и углекислый газ (1766), определил состав воздуха (1781) и химический состав воды (1784). С помощью изобретенных им крутильных весов подтвердил закон всемирного тяготения. Определил массу Земли (1798). Установил закон взаимодействия электрических зарядов (опубликован в 1879). Экспериментально исследовал электрические и тепловые явления.
КАРНО (Carnot) (Никола Леонар) Сади (1796-1832), французский физик и инженер, один из основателей термодинамики. Сын Л. Н. Карно. Рассмотрел идеальный термодинамический цикл и доказал теорему, названную его именем.
Принципы работы тепловых машин
Труд Карно был, по существу, первым серьезным теоретическим исследованием принципов работы тепловых машин. Хотя он пользовался уже в его время отвергавшимся многими физиками представлением о теплороде, приток которого вызывает нагревание, а отток — охлаждение вещества, ему удалось открыть целый ряд положений, играющих определяющую роль в работе этих машин:
- в любой тепловой машине должен быть нагреватель и холодильник, должны осуществляться повторяющиеся циклы: за расширением рабочего вещества в машине, сопровождающимся произведением работы, должно следовать сжатие; (Один из важнейших примеров — цикл Карно (теперь его чаще приводят в формулировке Клапейрона: изотермическое (при постоянной температуре нагревателя), затем адиабатическое (без теплообмена) расширение, потом вновь изотермическое (при температуре холодильника) и, наконец, адиабатическое сжатие, в результате чего система возвращается в исходное состояние) полезная работа, производимая за один цикл, тем больше, чем больше разность температур нагревателя и холодильника;
- эта работа тем больше, чем медленнее происходит расширение и сжатие, чем ближе процесс к квазиравновесному, когда система в каждый момент бесконечно близка к равновесной. Действительно, если поршень, под которым находится газ, поднимается быстро, то давление непосредственно под ним оказывается пониженным по сравнению с равновесным, а чем меньше это давление, тем меньше та работа, которая может быть произведена.
Попытки Карно напрямую связать коэффициент полезного действия (КПД) тепловой машины (это — тоже его термин) с температурой нагревателя и холодильника не увенчалась успехом только потому, что в то время еще не была известна абсолютная шкала температур.
Но он понял очень многое. Так, он дал глубокий анализ того, водяной пар или воздух выгоднее использовать в качестве рабочего вещества в тепловой машине, доказал, что максимальный теоретически возможный КПД не зависит от конструкции тепловой машины, а определяется только температурой нагревателя и холодильника, и установил много других важнейших положений.
Вряд ли нужно говорить, как важно было появление теории Карно в то время, когда паровые (да и все другие) тепловые машины заняли колоссальное место во всей мировой промышленности.
КЕПЛЕР (Kepler) Иоганн (1571-1630), немецкий астроном, один из творцов астрономии нового времени. Открыл законы движения планет (законы Кеплера), на основе которых составил планетные таблицы (т. н. Рудольфовы). Заложил основы теории затмений. Изобрел телескоп, в котором объектив и окуляр — двояковыпуклые линзы.
КЛАПЕЙРОН (Clapeyron) Бенуа Поль Эмиль (1799-1864), французский физик и инженер. В 1820-30 работал в России, член-корреспондент Петербургской АН (1830). Ввел в термодинамику индикаторные диаграммы, вывел т. н. уравнения Клапейрона и Клапейрона — Клаузиуса.
Довольно долгое время научные заслуги Клапейрона недооценивались: его труды в лучшем случае рассматривались как популяризация или даже перефразировка — на новом, графическом языке — работы Сади Карно. Клапейрон действительно развивал идеи Карно, изложенные в его знаменитом (но почти не оцененном современниками) «Размышлении о движущей силе огня и о машинах, способных развивать эту силу» и облекал их в более совершенную математическую и графическую форму (даже входящий во все учебники вариант рассмотрения цикла Карно — две изотермы и две адиабаты — был предложен Клапейроном). Исследуя цикл Карно, Клайпейрон вывел уравнение состояния идеального газа. Мнение о «вторичности» работ Клапейрона отчасти связано и с тем, что он в своих трудах не выделял, в чем состоит его оригинальный вклад, и даже название его труда было почти дословно таким же, что и у Карно.
Именно благодаря работам Клапейрона эти идеи Карно и получили признание и должную оценку, но он и сам внес в науку большой вклад. Помимо упомянутого уравнения Клапейрона—Менделеева он разработал уравнение Клапейрона—Клаузиуса, связывающее температуру плавления вещества с давлением.
КЛАУЗИУС (Clausius) Рудольф Юлиус Эмануэль (1822-88), немецкий физик, один из основателей термодинамики и молекулярно-кинетической теории теплоты, иностранный член-корреспондент Петербургской АН (1878). Дал (одновременно с У. Томсоном) первую формулировку второго начала термодинамики (1850), ввел понятия энтропии (1865), идеального газа, длины свободного пробега молекул. Обосновал (1850) т. н. уравнение Клапейрона — Клаузиуса. Доказал теорему вириала (1870). Разработал теорию поляризации диэлектриков (формула Клаузиуса — Моссотти). Сформулировал гипотезу «тепловой смерти Вселенной».
КОМПТОН (Compton) Артур Холли (1892-1962), американский физик. Открыл и объяснил эффект, названный его именем. Обнаружил полное внутреннее отражение рентгеновских лучей. Открыл широтный эффект в космических лучах. Участник создания атомной бомбы. Нобелевская премия (1927).
Черты дискретного в непрерывном
Будущий замечательный американский физик-экспериментатор родился немногим раньше, чем в физику вошло слово «квант»: для объяснения законов теплового излучения, как показал Макс Планк, пришлось допустить, что электромагнитные лучи уносят энергию порциями — квантами. Комптон окончил Вустерский колледж в год рождения квантовой модели атома Бора — Резерфорда и поступил в Принстонский университет в следующем году, когда опыты Джеймса Франка и Густава Людвига Герца доказали, что атомы и поглощают энергию только определенными порциями, как то и утверждал Бор. А еще раньше, в 1905 А. Эйнштейн убедительно показал, что для объяснения законов фотоэффекта приходится признать, что и поглощение излучения происходит все теми же квантами. Идея дискретности была органически чужда классическому представлению об электромагнитном излучении. И поэтому у сторонников классической физики оставалась всего лишь одна надежда: пусть и испускание, и поглощение происходит порциями, но, может быть, хотя бы распространение излучения происходит по волновым законам! Опыты, которые задумал тридцатилетний Артур Комптон и должны были проверить это.
Картина рассеяния электромагнитного излучения на электронах в классической теории выглядит так: электромагнитная волна налетает на несущую электрический заряд материальную точку — электрон; электрическое поле волны заставляет заряженную частицу колебаться, причем частота этих вынужденных колебаний равна частоте волны; колеблющийся электрон сам становится излучателем — от него расходятся «вторичные» электромагнитные волны, и при этом их частота равна частоте колебаний электрона. Таким образом, из классической теории однозначно следует, что частота электромагнитных волн при их рассеянии на свободных электронах не меняется. Именно это и вознамерился проверить Комптон. Брать в качестве мишени покоящиеся свободные электроны было технически трудно, да и излишне. Вполне подходили и обычные электроны в атомах, но только излучение требовалось такое, чтобы энергия каждого кванта была значительно больше энергии связи электрона в атоме: тогда этой связью можно было попросту пренебречь. Вполне подходили рентгеновские лучи. Их рассеяние на атомах вещества и исследовал Комптон.
Результаты оказались иными, чем предсказывала классическая теория: частота рассеянных лучей была меньше, чем у падающих, причем эта разница оказывалась тем значительнее, чем на больший угол происходило рассеяние. Этот результат, не вписывающийся в классическую картину рассеяния, находил немедленное простое объяснение, стоило принять, что излучение состоит из порций, каждая из которых несет не только энергию, но и импульс. При рассеянии каждого кванта электрон может «отобрать» у кванта излучения часть его импульса, («отдача») а, значит, и энергии; поскольку же, согласно теории квантов, энергия пропорциональна частоте, то это и объясняет наблюдавшееся Комптоном ее уменьшение. За этот эксперимент (для которого потребовалось разработать и новый метод определения длины волны рентгеновского излучения) и за его теоретическое объяснение Артур Комптон был удостоен в 1922 Нобелевской премии. Комптон выполнил также и другие важные исследования: наблюдал полное внутреннее отражение рентгеновских лучей, в 1921 пришел к догадке о спине, был одним из тех, кто обнаружил широтный эффект космических лучей и наличие в них заряженных частиц.
КОПЕРНИК (Kopernik, Copernicus) Николай (1473-1543), польский астроном, создатель гелиоцентрической системы мира. Совершил переворот в естествознании, отказавшись от принятого в течение многих веков учения о центральном положении Земли. Объяснил видимые движения небесных светил вращением Земли вокруг оси и обращением планет (в т. ч. Земли) вокруг Солнца. Свое учение изложил в сочинении «Об обращениях небесных сфер» (1543), запрещенном католической церковью с 1616 по 1828.
КУЛОН (Coulomb) Шарль Огюстен (1736-1806), французский инженер и физик, один из основателей электростатики. Исследовал деформацию кручения нитей, установил ее законы. Изобрел (1784) крутильные весы и открыл (1785) закон, названные его именем. Установил законы сухого трения.
В 1775 Парижская академия наук объявила конкурсную задачу: «Изыскание лучшего способа изготовления магнитных стрелок, их подвешивания и проверки совпадения их направления с направлением магнитного меридиана и, наконец, объяснение их регулярных суточных вариации».Что касается последней части задачи, ее решение в то время было явно недоступно (даже о самой причине существования магнитного поля Земли не только тогда, но даже и теперь известно не все!), но вот задача о наилучшем устройстве компаса и, в частности, подвеса магнитной стрелки была актуальна. Она увлекла Кулона.
О том, насколько эта задача была непроста, какую высокую точность требовалось обеспечивать, можно судить хотя бы по следующему факту: подвешенная на тонкой шелковой нити стрелка так чувствительно реагировала на все воздействия, что приходилось защищать ее не только от слабейших воздушных потоков, но даже и от приближения глаза наблюдателя (на стрелке и на теле человека всегда могут оказаться электрические заряды, и их взаимодействие может сказаться на силах). Чтобы исключить это, Кулон решил заменить шелковые нити металлической проводящей электричество проволокой. Это был шаг, сыгравший в дальнейшем очень большую роль, когда Кулон изобрел и начал использовать крутильные весы. Но пока до этих работ было еще далеко. В 1777 Кулон становится победителем конкурса, посвященного разработке прибора для исследования магнитного поля Земли, и тут же погружается в другую большую работу: в исследование трения. В 1779 (а затем, повторно, в 1781) академия объявила еще один конкурс, посвященный именно трению. Уже в 1780 Кулон представил в академию конкурсную работу «Теория простых машин», которая через год также была удостоена премии. Результаты этой работы базировались на многочисленных зкспериментах Кулона, в которых исследовалось как трение между твердыми телами, так и трение в жидкостях и газах. Эти работы Кулон проводил уже в Лилле, куда он был переведен в начале 1780 г. Примерно через год исполнилось его давнишнее желание: произошел перевод в Париж, где 12 декабря 1781 он был избран в академики по классу механики.
Закон Кулона известен теперь, наверное, любому школьнику. Но вряд ли многим известно, какое искусство и наблюдательность пришлось проявить исследователю.
Кулон заметил попутно, что заряды довольно быстро «стекают» с тел, и правильно объяснил это тем, что воздух обладает некоторой проводимостью; это обстоятельство осложняло эксперимент, но оно само стало важным открытием. Многие знают, что закон взаимодействия магнитных полюсов, также тщательно изученный Кулоном, внешне очень похож на закон взаимодействия электрических зарядов. Из-за этого электростатика и магнитостатика долго представлялись во всем подобными друг другу, если не считать того удивительного факта, что «магнитные заряды» противоположных знаков почему-то всегда встречаются попарно и никогда — по отдельности. Лишь после работ Ампера выяснилось, что магнитные поля постоянных магнитов обусловлены не тем, что они состоят из огромного числа маленьких магнитиков (как, заметим, полагал и Кулон), а электрическими токами, т.е. движением электрических зарядов.
КЮРИ (Curie) Пьер (1859-1906), французский физик, один из создателей учения о радиоактивности. Открыл (1880) и исследовал пьезоэлектричество. Исследования по симметрии кристаллов (принцип Кюри), магнетизму (закон Кюри, точка Кюри). Совместно с женой М. Склодовской-Кюри открыл (1898) полоний и радий, исследовал радиоактивное излучение. Ввел термин «радиоактивность». Нобелевская премия (1903, совместно со Склодовской-Кюри и А. А. Беккерелем).
ЛАВУАЗЬЕ (Lavoisier) Антуан Лоран (1743-94), французский химик, один из основоположников современной химии. Систематически применял в химических исследованиях количественные методы. Выяснил роль кислорода в процессах горения, окисления и дыхания (1772-77), чем опроверг теорию флогистона. Один из основателей термохимии. Руководил разработкой новой химической номенклатуры (1786-87). Автор классического курса «Начальный учебник химии» (1789). В 1768-91 генеральный откупщик; во время Французской революции по суду революционного трибунала в числе других откупщиков гильотинирован.
ЛАМБЕРТ (Lambert) Иоганн Генрих (1728-1777), немецкий ученый, один из создателей фотометрии. В математике доказал иррациональность числа Пи (1766); труды по алгебре, геометрии, сферической тригонометрии. В астрономии исследовал кометные орбиты, строение Вселенной. Автор идеи универсального языка знаков.
ЛАПЛАС (Laplace) Пьер Симон (1749-1827), французский астроном, математик, физик, иностранный почетный член Петербургской АН (1802). Автор классических трудов по теории вероятностей и небесной механике (динамика Солнечной системы в целом и ее устойчивость и др.): сочинения «Аналитическая теория вероятностей» (1812) и «Трактат о небесной механике» (т. 1-5, 1798-1825); много трудов по дифференциальным уравнениям, математической физике, теории капиллярности, теплоте, акустике, геодезии и др. Предложил (1796) космогоническую гипотезу (гипотеза Лапласа). Классический представитель механистического детерминизма.
ЛЕБЕДЕВ Петр Николаевич (1866-1912), российский физик, создатель первой русской научной школы физиков. Профессор Московского университета (1900-11), ушел в отставку в знак протеста против притеснений студенчества. Впервые получил (1895) и исследовал миллиметровые электромагнитные волны. Открыл и измерил давление света на твердые тела (1900) и газы (1908), количественно подтвердив электромагнитную теорию света. Имя Лебедева носит Физический институт РАН.
В 1900 Лебедев при помощи виртуозных, хотя и выполненных скромными средствами опытов подтвердил теоретическое предсказание Максвелла о давлении света на твердые тела, а в 1908 — и на газы. Это явилось важной вехой в науке об электромагнитных явлениях. Известному английскому физику У. Томсону принадлежат слова: «Я всю жизнь воевал с Максвеллом, не признавал его светового давления, и вот... Лебедев заставил меня сдаться перед его опытами».
Лебедев изучал также действие электромагнитных волн на резонаторы и выдвинул в связи с этими исследованиями глубокие соображения, касающиеся межмолекулярных взаимодействий, занимался вопросами акустики, в частности, гидроакустики. Изучение давления света на газы побудило Лебедева заинтересоваться происхождением хвостов комет.
ЛАНДАУ Лев Давидович (1908-68), российский физик-теоретик, основатель научной школы, академик АН СССР (1946), Герой Социалистического Труда (1954). Труды во многих областях физики: магнетизм; сверхтекучесть и сверхпроводимость; физика твердого тела, атомного ядра и элементарных частиц, физика плазмы; квантовая электродинамика; астрофизика и др. Автор классического курса теоретической физики (совместно с Е. М. Лифшицем). Ленинская премия (1962), Государственная премия СССР (1946, 1949, 1953), Нобелевская премия (1962).
Всемирное признание
Заслуги Ландау были многократно отмечены как внутри страны, так и за ее пределами. В 1946 Ландау избирается членом Академии наук СССР, он многократно награждался орденами, был Героем Социалистического Труда, трижды ему присваивались Государственные премии, а в 1962 Ландау вместе с Е. Лифшицем за создание Курса теоретической физики была присвоена Ленинская премия. Ландау был членом многих зарубежных академий, лауреатом почетных премий, имел множество медалей. В 1962 Ландау получил Нобелевскую премию по физике «За пионерские исследования конденсированных сред, особенно жидкого гелия».
Перечень статей Ландау поражает прежде всего широтой. «Этот солидный том [на английском Собрание трудов Ландау вышло в одном томе] возбуждает чувства, подобные тем, которые вызывает полное собрание пьес Шекспира или Кехелевский каталог сочинений Моцарта. Безмерность совершенного одним человеком всегда представляется невероятной». Ландау, по-видимому, один из последних энциклопедистов: его вклад в теоретическую физику охватывает ее всю – от гидродинамики до квантовой теории поля. Введение принципа сохранения комбинированной четности соседствует в его творчестве с теорией фазовых переходов второго рода и теорией промежуточного состояния сверхпроводников. А исследование основ квантовой электродинамики — с построением теории квантовых жидкостей (в частности, Ландау принадлежит объяснение природы сверхтекучести). Хотя научное творчество Ландау закончилось около 40 лет назад, полученные им результаты принадлежат отнюдь не только истории науки. Уравнения Ландау—Лифшица и Гинзбурга—Ландау, энергетический спектр сверхтекучего гелия, теория Ферми-жидкости, затухание Ландау, ландауские уровни энергии электрона в магнитном поле, параметр порядка для описания фазовых переходов второго рода, исследование основ квантовой электродинамики и многое другое активно «работает» в сегодняшней физике.
Курс теоретической физики
Наследие Ландау не исчерпывается результатами, полученными им лично и с соавторами. Важное место в его творческом наследии занимает Курс теоретической физики (знаменитый «Ландау и Лифшиц»). Без преувеличения можно сказать, что «Курс изменил облик теоретической физики. Многие разделы теоретической физики изложены в нем совершенно по-новому. Авторам «Курса удалось объединить изложение основных разделов теоретической физики с рассмотрением конкретных явлений природы. Из разрозненных дисциплин родилась единая наука —теоретическая физика, овладев методами которой, можно кратчайшим путем подойти к решению новых, непрерывно возникающих задач. Заметим, что одна из «заповедей» Ландау гласит: «Жизнь слишком коротка, чтобы тратить ее на решение решеных задач».
Как мы уже говорили, «Курс задумывался Ландау еще в юности. Был составлен подробный план всего курса, который, естественно, изменялся и дополнялся, т. к. менялась, расширялась и совершенствовалась теоретическая физика. С непосредственным участием Ландау написаны семь томов: Механика, Теория поля, Квантовая механика, Статистическая физика (часть1), Гидродинамика, Теория упругости и Электродинамика сплошных сред. После 1962 года один том — Квантовую электродинамику написали В. Б. Берестецкий, Е. М. Лифшиц и Л. П. Питаевский (все они — ученики Ландау); два тома — Статистическую физику (часть 2) и Кинетику написали Е. М. Лифшиц и Л. П. Питаевский. «Курс Ландау и Лифшица переведен на разные языки, во всем мире несколько поколений физиков-теоретиков училось и учится по нему. Для многих тома «Курса — настольные книги.
ЛЕВКИПП (5 в. до н. э.), древнегреческий философ, один из создателей античной атомистики, учитель Демокрита.
ЛЕЙБНИЦ (Leibniz) Готфрид Вильгельм (1646-1716), немецкий философ, математик, физик, языковед. С 1676 на службе у ганноверских герцогов. Основатель и президент (с 1700) Бранденбургского научного общества (позднее — Берлинская АН). По просьбе Петра I разработал проекты развития образования и государственного управления в России. Реальный мир, по Лейбницу, состоит из бесчисленных психических деятельных субстанций — монад, находящихся между собой в отношении предустановленной гармонии («Монадология», 1714); существующий мир создан богом как «наилучший из всех возможных миров» («Теодицея», 1710). В духе рационализма развил учение о прирожденной способности ума к познанию высших категорий бытия и всеобщих и необходимых истин логики и математики («Новые опыты о человеческом разуме», 1704). Предвосхитил принципы современной математической логики («Об искусстве комбинаторики», 1666). Один из создателей дифференциального и интегрального исчислений.
ЛЕОНАРДО ДА ВИНЧИ (Leonardo da Vinci) (15 апреля 1452, Винчи близ Флоренции — 2 мая 1519, замок Клу, близ Амбуаза, Турень, Франция), итальянский живописец, скульптор, архитектор, ученый, инженер.
Сочетая разработку новых средств художественного языка с теоретическими обобщениями, Леонардо да Винчи создал образ
Леонардо — ученый. Технические проекты
Как ученый и инженер Леонардо да Винчи обогатил проницательными наблюдениями и догадками почти все области знания того времени, рассматривая свои заметки и рисунки как наброски к гигантской натурфилософской энциклопедии. Он был ярким представителем нового, основанного на эксперименте естествознания. Особое внимание Леонардо уделял механике, называя ее «раем математических наук» и видя в ней ключ к тайнам мироздания; он попытался определить коэффициенты трения скольжения, изучал сопротивление материалов, увлеченно занимался гидравликой. Многочисленные гидротехнические эксперименты получили выражение в новаторских проектах каналов и ирригационных систем. Страсть к моделированию приводила Леонардо к поразительным техническим предвидениям, намного опережавшим эпоху: таковы наброски проектов металлургических печей и прокатных станов, ткацких станков, печатных, деревообрабатывающих и прочих машин, подводной лодки и танка, а также разработанные после тщательного изучения полета птиц конструкции летальных аппаратов и парашюта.
Собранные Леонардо наблюдения над влиянием прозрачных и полупрозрачных тел на окраску предметов, отраженные в его живописи, привели к утверждению в искусстве принципов воздушной перспективы. Универсальность оптических законов была связана для него с представлением об однородности Вселенной. Он был близок к созданию гелиоцентрической системы, считая Землю «точкой в мироздании». Изучал устройство человеческого глаза, высказав догадки о природе бинокулярного зрения.
Анатомия, ботаника, палеонтология
В анатомических исследованиях, обобщив результаты вскрытий трупов, в детализированных рисунках заложил основы современной научной иллюстрации. Изучая функции органов, рассматривал организм как образец «природной механики». Впервые описал ряд костей и нервов, особое внимание уделял проблемам эмбриологии и сравнительной анатомии, стремясь ввести экспериментальный метод и в биологию. Утвердив ботанику как самостоятельную дисциплину, дал классические описания листорасположения, гелио- и геотропизма, корневого давления и движения соков растений. Явился одним из основоположников палеонтологии, считая, что окаменелости, находимые на вершинах гор, опровергают представления о «всемирном потопе».
ЛОМОНОСОВ Михаил Васильевич (1711-65), первый русский ученый-естествоиспытатель мирового значения, поэт, заложивший основы современного русского литературного языка, художник, историк, поборник развития отечественного просвещения, науки и экономики. Родился 8(19) ноября в д. Денисовка (ныне с. Ломоносово) в семье помора. В 19 лет ушел учиться (с 1731 в Славяно-греко-латинской академии в Москве, с 1735 в Академическом университете в Санкт-Петербурге, в 1736-41 в Германии). С 1742 адъюнкт, с 1745 академик Петербургской АН. В 1748 основал при АН первую в России химическую лабораторию. По инициативе Ломоносова основан Московский университет (1755). Открытия Ломоносова обогатили многие отрасли знания. Развивал атомно-молекулярные представления о строении вещества. В период господства теории теплорода утверждал, что теплота обусловлена движением корпускул. Сформулировал принцип сохранения материи и движения. Исключил флогистон из числа химических агентов. Заложил основы физической химии. Исследовал атмосферное электричество и силу тяжести. Выдвинул учение о цвете. Создал ряд оптических приборов. Открыл атмосферу на Венере. Описал строение Земли, объяснил происхождение многих полезных ископаемых и минералов. Опубликовал руководство по металлургии. Подчеркивал важность исследования Северного морского пути, освоения Сибири. Будучи сторонником деизма, материалистически рассматривал явления природы. Автор трудов по русской истории, критиковал норманнскую теорию. Крупнейший русский поэт-просветитель 18 в., один из основоположников силлабо-тонического стихосложения. Создатель русской оды философского и высокого гражданского звучания. Автор поэм, поэтических посланий, трагедий, сатир, фундаментальных филологических трудов и научной грамматики русского языка. Возродил искусство мозаики и производство смальты, создал с учениками мозаичные картины. Член Академии художеств (1763). Похоронен в Санкт-Петербурге в Некрополе 18 в.
ЛОРЕНЦ (Лорентц) (Lorentz) Хендрик Антон (1853-1928), нидерландский физик, иностранный член-корреспондент Петербургской АН (1910) и иностранный почетный член АН СССР, (1925). Труды по теоретической физике. Создал классическую электронную теорию, с помощью которой объяснил многие электрические и оптические явления, в т. ч. эффект Зеемана. Разработал электродинамику движущихся сред. Вывел преобразования, названные его именем. Близко подошел к созданию теории относительности. Нобелевская премия (1902, совместно с П. Зееманом).
Лоренц не только досконально изучил, но и развил теорию Максвелла. Дело в том, что эта теория как бы распадалась на две части. Одна из них — это так называемые полевые уравнения; они позволяют по заданному распределению источников, т. е. зарядов и токов, вычислить напряженности электрического и магнитного полей. Но есть и вторая часть: нужно выяснять, что же собой представляют сами источники, т.е. носители зарядов и как на них действуют эти поля. Лоренц выдвинул идею, что основное влияние на электрические и магнитные свойства сред оказывают мельчайшие носители электрических зарядов — электроны. Это может показаться невероятным: диссертацию, в которой впервые была намечена грандиозная программа объяснения всех электрических и магнитных свойств сред, в которой центральная роль отводилась электронам, Лоренц защитил 11 декабря 1875 г., т.е. за двадцать лет до «официального рождения» электрона! Догадки о дискретной структуре электричества, о мельчайших носителях заряда высказывались уже в начале 19 века, но в ту пору, когда об устройстве атомов физики, в сущности, почти ничего не знали (и даже еще не располагали доказательствами самого факта их существования), нужна была большая научная смелость и убежденность, чтобы выдвинуть такую программу. Тем более, что и «образ» самого электрона совершенно не был ясен.
Лоренц и начал с этого вопроса, приняв, что электрон — частица, имеющая определенную массу и электрический заряд и подчиняющаяся законам классической механики Ньютона. Из-за малости массы электрона он сильнее всех остальных частиц реагирует на действие электрических и магнитных сил и становится поэтому наиболее активным участником всех электромагнитных процессов в веществах. Наши сегодняшние представления об электронах сильно отличаются от лоренцовских, теперь принято, что они «живут» по законам квантовой, а не классической физики, но глубочайшие идеи Лоренца не потеряли актуальности и поныне.
Основу теории Максвелла составляли уравнения, определяющие зависимость напряженностей электрических и магнитных полей от координат точек пространства. Но со времен Ньютона и даже Галилея было известно, что эти величины относительны, что они меняются при переходе от одной системы отсчета к другой, движущейся относительно первой. В какой же системе отсчета записываются уравнения Максвелла? Может быть, в той, в которой рассматриваемое тело покоится? Но ведь движение относительно, как, по крайней мере, считается в механике. А в электродинамике?
Лоренц, как и многие его предшественники, в том числе, и великие Фарадей и Максвелл, считали, что все пространство заполнено особой средой — эфиром, натяжения в котором и проявляются как напряженности электромагнитных полей. Если эфир в целом не увлекается материальными телами в их движении, значит существует абсолютное движение — движение по отношению к эфиру. Окончательное решение проблемы — за экспериментом. Такой эксперимент был осуществлен в конце 19 века Майкельсоном и Морли, пытавшимися обнаружить движение Земли относительно эфира. Но обнаружить «эфирный ветер» не удалось, и это породило принципиальную проблему в электродинамике движущихся сред. Попытку спасти положение предпринял в 1892 Джордж Фицджеральд (1851-1901), который показал, что отрицательные результаты опыта Майкельсона можно объяснить, если принять, что размеры тел,движущихся со скоростью V, сокращаются в направлении их движения.Это было всего лишь блестящей гипотезой, но Лоренц предложил ее обоснование. Он исходил из того, что все положения атомов и молекул в любой линейке определяются почти лишь электростатическими силами; Лоренц (эти вопросы были детально исследованы в его работах) уже знал, что кулоновские поля движущихся зарядов испытывают точно такое же сокращение, что и должно было объяснять фицджералдово сокращение (теперь все называют его лоренцовым).
Впоследствии появилась критика этой интерпретации (в роли «линейки» могут выступать не твердые тела, а сами электромагнитные волны, а они вовсе не состоят из атомов). Анализ всего комплекса возникающих здесь проблем привел к пересмотру многих классических представлений о пространстве и времени, к возникновению одной из великих теорий 20 века — теории относительности. Воспитанный в традициях классической теории и сделавший весьма многое для ее углубления и развития, Лоренц не мог легко и быстро принять все те грандиозные перемены, которые пришли в физику с началом нового века. Но он не только не препятствовал распространению новых идей, но, всегда стремился глубже их понять и популяризировать. Не случайно он в глазах многих был достоин почетного титула «Старейшины физической науки». В 1902 он совместно с Зееманом был удостоен Нобелевской премии, многократно приглашался для чтения лекций в университеты Европы и Америки.
ЛОШМИДТА ЧИСЛО (обозначается NL), число молекул в 1 см3 идеального газа при нормальных условиях. NL = 2,68*1019 см-3. Впервые (1865) определено австрийским физиком Й. Лошмидтом (J. Loschmidt, 1821-95).
ЛУКРЕЦИЙ, Тит Лукреций Кар (Titus Lucretius Carus), римский поэт и философ 1 в. до н. э. Дидактическая поэма «О природе вещей» — единственное полностью сохранившееся систематическое изложение материалистической философии древности; популяризирует учение Эпикура.
МАЙЕР (Mayer) Юлиус Роберт (1814-78), немецкий естествоиспытатель, врач. Первым сформулировал закон сохранения энергии (эквивалентности механической работы и теплоты) и теоретически рассчитал механический эквивалент теплоты (1842). Идеи и приоритет Майера долгое время не были признаны.
МАКСВЕЛЛ (Maxwell) Джеймс Клерк (Clerk) (1831-79), английский физик, создатель классической электродинамики, один из основоположников статистической физики, организатор и первый директор (с 1871) Кавендишской лаборатории. Развивая идеи М. Фарадея, создал теорию электромагнитного поля (уравнения Максвелла); ввел понятие о токе смещения, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света. Установил статистическое распределение, названное его именем. Исследовал вязкость, диффузию и теплопроводность газов. Показал, что кольца Сатурна состоят из отдельных тел. Труды по цветному зрению и колориметрии (диск Максвелла), оптике (эффект Максвелла), теории упругости (теорема Максвелла, диаграмма Максвелла — Кремоны), термодинамике, истории физики и др.
Научная деятельность
Необычайно широкая сфера научных интересов Максвелла охватывала теорию электромагнитных явлений, кинетическую теорию газов, оптику, теорию упругости и многое другое. Одними из первых его работ были исследования по физиологии и физике цветного зрения и колориметрии, начатые в 1852. В 1861 Максвелл впервые получил цветное изображение, спроецировав на экран одновременно красный, зеленый и синий диапозитивы. Этим была доказана справедливость трехкомпонентной теории зрения и намечены пути создания цветной фотографии. В работах 1857-59 Максвелл теоретически исследовал устойчивость колец Сатурна и показал, что кольца Сатурна могут быть устойчивы лишь в том случае, если состоят из не связанных между собой частиц (тел).
В 1855 Максвелл приступил к циклу своих основных работ по электродинамике. Были опубликованы статьи «О фарадеевых силовых линиях» (1855-56), «О физических силовых линиях» (1861-62), «Динамическая теория электромагнитного поля» (1869). Исследования были завершены выходом в свет двухтомной монографии «Трактат об электричестве и магнетизме» (1873).
Создание теории электромагнитного поля
Когда Максвелл в 1855 начал исследования электрических и магнитных явлений, многие из них уже были хорошо изучены: в частности, установлены законы взаимодействия неподвижных электрических зарядов (закон Кулона) и токов (закон Ампера); доказано, что магнитные взаимодействия есть взаимодействия движущихся электрических зарядов. Большинство ученых того времени считало, что взаимодействие передается мгновенно, непосредственно через пустоту (теория дальнодействия).
Решительный поворот к теории близкодействия был сделан М. Фарадеем в 30-е гг. 19 в. Согласно идеям Фарадея, электрический заряд создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой, и наоборот. Взаимодействие токов осуществляется посредством магнитного поля. Распределение электрических и магнитных полей в пространстве Фарадей описывал с помощью силовых линий, которые по его представлению напоминают обычные упругие линии в гипотетической среде — мировом эфире.
Максвелл полностью воспринял идеи Фарадея о существовании электромагнитного поля, то есть о реальности процессов в пространстве возле зарядов и токов. Он считал, что тело не может действовать там, где его нет.
Первое, что сделал Максвелл — придал идеям Фарадея строгую математическую форму, столь необходимую в физике. Выяснилось, что с введением понятия поля законы Кулона и Ампера стали выражаться наиболее полно, глубоко и изящно. В явлении электромагнитной индукции Максвелл усмотрел новое свойство полей: переменное магнитное поле порождает в пустом пространстве электрическое поле с замкнутыми силовыми линиями (так называемое вихревое электрическое поле).
Следующий, и последний, шаг в открытии основных свойств электромагнитного поля был сделан Максвеллом без какой-либо опоры на эксперимент. Им была высказана гениальная догадка о том, что переменное электрическое поле порождает магнитное поле, как и обычный электрический ток (гипотеза о токе смещения). К 1869 все основные закономерности поведения электромагнитного поля были установлены и сформулированы в виде системы четырех уравнений, получивших название Максвелла уравнений.
Из уравнений Максвелла следовал фундаментальный вывод: конечность скорости распространения электромагнитных взаимодействий. Это главное, что отличает теорию близкодействия от теории дальнодействия. Скорость оказалась равной скорости света в вакууме: 300000 км/с. Отсюда Максвелл сделал заключение, что свет есть форма электромагнитных волн.
Работы по молекулярно-кинетической теории газов
Чрезвычайно велика роль Максвелла в разработке и становлении молекулярно-кинетической теории (современное название — статистическая механика). Максвелл первым высказал утверждение о статистическом характере законов природы. В 1866 им открыт первый статистический закон — закон распределения молекул по скоростям (Максвелла распределение). Кроме того, он рассчитал значения вязкости газов в зависимости от скоростей и длины свободного пробега молекул, вывел ряд соотношений термодинамики.
Максвелл был блестящим популяризатором науки. Он написал ряд статей для Британской энциклопедии и популярные книги: «Теория теплоты» (1870), «Материя и движение» (1873), «Электричество в элементарном изложении» (1881), которые были переведены на русский язык; читал лекции и доклады на физические темы для широкой аудитории. Максвелл проявлял также большой интерес к истории науки. В 1879 он опубликовал труды Г. Кавендиша по электричеству, снабдив их обширными комментариями.
Оценка работ Максвелла
Работы ученого не были по достоинству оценены его современниками. Идеи о существовании электромагнитного поля казались произвольными и неплодотворными. Только после того, как Г. Герц в 1886-89 экспериментально доказал существование электромагнитных волн, предсказанных Максвеллом, его теория получила всеобщее признание. Произошло это спустя десять лет после смерти Максвелла.
После экспериментального подтверждения реальности электромагнитного поля было сделано фундаментальное научное открытие: существуют различные виды материи, и каждому из них присущи свои законы, не сводимые к законам механики Ньютона. Впрочем, сам Максвелл вряд ли отчетливо это сознавал и первое время пытался строить механические модели электромагнитных явлений.
О роли Максвелла в развитии науки превосходно сказал американский физик Р. Фейнман: «В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием 19 столетия, несомненно, будет открытие Максвеллом законов электродинамики. На фоне этого важного научного открытия гражданская война в Америке в том же десятилетии будет выглядеть провинциальным происшествием».
МАРКОНИ (Marconi) Гульельмо (1874-1937), итальянский радиотехник и предприниматель. С 1894 в Италии, а с 1896 в Великобритании проводил опыты по практическому использованию электромагнитных волн; в 1897 получил патент на изобретение способа беспроводного телеграфирования. Организовал акционерное общество (1897). Способствовал развитию радио как средства связи. Нобелевская премия (1909, совместно с К. Ф. Брауном).
МЕНДЕЛЕЕВ Дмитрий Иванович (1834-1907), российский химик, разносторонний ученый, педагог. Открыл (1869) периодический закон химических элементов — один из основных законов естествознания. Оставил св. 500 печатных трудов, среди которых классические «Основы химии» (ч. 1-2, 1869-71, 13 изд., 1947) — первое стройное изложение неорганической химии. Автор фундаментальных исследований по химии, химической технологии, физике, метрологии, воздухоплаванию, метеорологии, сельскому хозяйству, экономике, народному просвещению и др., тесно связанных с потребностями развития производительных сил России. Заложил основы теории растворов, предложил промышленный способ фракционного разделения нефти, изобрел вид бездымного пороха, пропагандировал использование минеральных удобрений, орошение засушливых земель. Один из инициаторов создания Русского химического общества (1868). Профессор Петербургского университета (1865-90), ушел в отставку в знак протеста против притеснения студенчества. С 1876 член-корреспондент Петербургской АН, в 1880 выдвигался в академики, но был забаллотирован, что вызвало резкий общественный протест. Организатор и первый директор (1893) Главной палаты мер и весов (ныне ВНИИ метрологии им. Менделеева).
МЕРСЕНН (Mersenne) Марен (1588-1648), французский ученый. Измерил скорость звука в воздухе. Предложил схему зеркального телескопа. Обширная переписка Мерсенна со многими учеными разных стран (в 1932-70 издано 11 томов) способствовала научному общению.
МОПЕРТЮИ (Maupertuis) Пьер Луи Моро (Moreau) де (1698-1759), французский ученый, иностранный почетный член Петербургской АН (1738). В 1741-56 работал в Германии, президент Берлинской АН (1745-53). В 1736-37 руководил т. н. лапландской экспедицией для градусных измерений. Первым сформулировал принцип наименьшего действия
НЕРНСТ (Nernst) Вальтер (1864-1941), немецкий физикохимик, один из основоположников современной физической химии, иностранный член-корреспондент РАН (1923), иностранный почетный член АН СССР (1926). Сформулировал теорему (1906) — т. н. 3-е начало термодинамики, открыл одно из термомагнитных явлений (1886, эффект Нернста — Эттингсхаузена). Труды по теории растворов (закон распределения Нернста), электрохимии, кинетике и катализу; разработал (1904) диффузионную теорию гетерогенных химических реакций. Нобелевская премия (1920).
НЬЮТОН (Newton) Исаак (1643-1727), английский математик, механик, астроном и физик, создатель классической механики, член (1672) и президент (с 1703) Лондонского королевского общества. Фундаментальные труды «Математические начала натуральной философии» (1687) и «Оптика» (1704). Разработал (независимо от Г. Лейбница) дифференциальное и интегральное исчисления. Открыл дисперсию света, хроматическую аберрацию, исследовал интерференцию и дифракцию, развивал корпускулярную теорию света, высказал гипотезу, сочетавшую корпускулярные и волновые представления. Построил зеркальный телескоп. Сформулировал основные законы классической механики. Открыл закон всемирного тяготения, дал теорию движения небесных тел, создав основы небесной механики. Пространство и время считал абсолютными. Работы Ньютона намного опередили общий научный уровень его времени, были малопонятны современникам. Был директором Монетного двора, наладил монетное дело в Англии. Известный алхимик, Ньютон занимался хронологией древних царств. Теологические труды посвятил толкованию библейских пророчеств (большей частью не опубликованы).
Интерес к технике заставил Ньютона задуматься над явлениями природы; он углубленно занимался и математикой. Об этом позже написал Жан Батист Био: «Один из его дядей, найдя его однажды под изгородью с книгой в руках, погруженного в глубокое размышление, взял у него книгу и нашел, что он был занят решением математической задачи. Пораженный таким серьезным и деятельным направление столь молодого человека, он уговорил его мать не противиться далее желанию сына и послать его для продолжения занятий». После серьезной подготовки Ньютон в 1660 поступил в Кембридж в качестве Subsizzfr'a (так назывались неимущие студенты, которые обязаны были прислуживать членам колледжа, что не могло не тяготить Ньютона).
За шесть лет Ньютоном были пройдены все степени колледжа и подготовлены все его дальнейшие великие открытия. В 1665 г. Ньютон стал магистром искусств.
В этом же году, когда в Англии свирепствовала эпидемия чумы, он решил временно поселиться в Вулсторпе. Именно там он начал активно заниматься оптикой; поиски способов устранения хроматической аберрации в линзовых телескопах привели Ньютона к исследованиям того, что теперь называется дисперсией, т. е. зависимости показателя преломления от частоты. Многие из проведенных им экспериментов (а их насчитывается более тысячи) стали классическими и повторяются и сегодня в школах и институтах.
Лейтмотивом всех исследований было стремление понять физическую природу света. Сначала Ньютон склонялся к мысли о том, что свет — это волны во всепроникающем эфире, но позже он отказался от этой идеи, решив, что сопротивление со стороны эфира должно было бы заметным образом тормозить движение небесных тел. Эти доводы привели Ньютона к представлению, что свет — это поток особых частиц, корпускул, вылетающих из источника и движущихся прямолинейно, пока они не встретят препятствия. Корпускулярная модель объясняла не только прямолинейность распространения света, но и закон отражения (упругое отражение), и — правда, не без дополнительного предположения — и закон преломления. Это предположение заключалось в том, что световые корпускулы, подлетая, к поверхности воды, например, должны притягиваться ею и потому испытывать ускорение. По этой теории скорость света в воде должна быть больше, чем в воздухе (что вступило в противоречие с более поздними экспериментальными данными).
На формирование корпускулярных представлений о свете явным образом повлияло, что в это время уже, в основном, завершилась работа, которой суждено было стать основным великим итогом трудов Ньютона — создание единой, основанной на сформулированных им законах механики физической картины Мира.
В основе этой картины лежало представление о материальных точках — физически бесконечно малых частицах материи и о законах, управляющих их движением. Именно четкая формулировка этих законов и придала механике Ньютона полноту и законченность. Первый из этих законов был, фактически, определением инерциальных систем отсчета: именно в таких системах не испытывающие никаких воздействий материальные точки движутся равномерно и прямолинейно. Второй закон механики играет центральную роль. Он гласит, что изменение количества, движения (произведения массы на скорость) за единицу времени равно силе, действующей на материальную точку. Масса каждой из этих точек является неизменной величиной; вообще все эти точки «не истираются», по выражению Ньютона, каждая из них вечна, т. е. не может ни возникать, ни уничтожаться. Материальные точки взаимодействуют, и количественной мерой воздействия на каждую из них и является сила. Задача выяснения того, каковы эти силы, является корневой проблемой механики.
Наконец, третий закон — закон «равенства действия и противодействия» объяснял, почему полный импульс любого тела, не испытывающего внешних воздействий, остается неизменным, как бы ни взаимодействовали между собой его составные части.
Поставив проблему изучения различных сил, Ньютон сам же дал первый блистательный пример ее решения, сформулировав закон всемирного тяготения: сила гравитационного притяжения между телами, размеры которых значительно меньше расстояния между ними, прямо пропорциональна их массам, обратно пропорциональна квадрату расстояния между ними и направлена вдоль соединяющей их прямой. Закон всемирного тяготения позволил Ньютону дать количественное объяснение движению планет вокруг Солнца и Луны вокруг Земли, понять природу морских приливов. Это не могло не произвести огромного впечатления на умы исследователей. Программа единого механического описания всех явлений природы — и «земных», и «небесных» на долгие годы утвердилась в физике. Более того, многим физикам в течение двух столетий сам вопрос о границах применимости законов Ньютона представлялся неоправданным.
Будучи по натуре весьма осторожным (чтобы не сказать робким) человеком, Ньютон, помимо его воли оказывался порой втянутым в мучительные для него дискуссии и конфликты. Так, его теория света и цветов, изложенная в 1675, вызвала такие нападки, что Ньютон решил не публиковать ничего по оптике, пока жив Гук, наиболее ожесточенный его оппонент. Пришлось Ньютону принять участие и в политических событиях. С 1688 до 1694 он был членом парламента. К тому времени, в 1687 г. вышел в свет его основной труд «Математические начала натуральной философии» — основа механики всех физических явлений, от движения небесных тел до распространения звука. На несколько веков вперед эта программа определила развитие физики, и ее значение не исчерпано и поныне.
ПЛАНК (Planck) Макс (1858-1947), немецкий физик, один из основоположников квантовой теории, иностранный член-корреспондент Петербургской АН (1913) и почетный член АН СССР (1926). Ввел (1900) квант действия (постоянная Планка) и, исходя из идеи квантов, вывел закон излучения, назван его именем. Труды по термодинамике, теории относительности, философии естествознания. Нобелевская премия (1918).
Работы Клаузиуса обусловили на долгие годы особое пристрастие Планка к термодинамике. Не удовлетворившись определением необратимых процессов, данным Клаузиусом, Планк предложил более общее определение. Эти работы, к огорчению Планка, не вызвали интереса в научных кругах, не помогли и личные контакты, и переписка с рядом известных специалистов по термодинамике. Но Планк продолжал упорно работать. В 1879 он защитил докторскую диссертацию, посвященную второму началу термодинамики, и уже через год получил должность приват-доцента Мюнхенского университета, а в 1885 стал профессором. В 1897 впервые появилась его книга «Лекции по термодинамике», впоследствии многократно переиздававшаяся и переведенная на многие языки.
Интерес к проблемам теплового излучения тел возник у Планка под влиянием экспериментальных исследований, проводившихся в то время в Государственном физико-техническом институте (Берлин — Шарлоттенбург) и теоретических работ Кирхгофа, посвященных излучению абсолютно черного тела. Кирхгоф доказал, что спектральный состав равновесного излучения не зависит от природы излучающих тел и в этом смысле является универсальным. Это утверждение не могло не вызвать интереса Планка, склад ума которого делал для него особенно привлекательными положения, несущие черты чего-то «абсолютного». С другой стороны, оно открывало важные возможности теоретического анализа, поскольку позволяло, исследуя излучение, заменять реальные тела некими «моделями». Наиболее простой и поэтому удобной явилась предложенная Планком модель электрических осцилляторов — заряженных частиц, гармонически колеблющихся подобно маятникам. Уравнения Максвелла позволяли вычислить, как осцилляторы излучают и поглощают электромагнитные волны, а статистические законы Больцмана давали возможность связать особенности колебаний с температурой. На основании вышесказанного, можно было, казалось, точно рассчитать спектральный состав равновесного излучения. Однако все попытки такого рода встречали серьезные затруднения у исследователей.
Попытки самого Планка решить эту проблему, описать экспериментальные данные единой теоретической формулой, увенчались успехом только после того, как он (вопреки всем известным законам физики) фактически принял, что осциллятор, колеблющийся с частотой ν, излучает дискретными порциями (квантами), энергия которых пропорциональна частоте Е = hν. Полученную формулу для распределения энергии в спектре электромагнитного излучения абсолютно черного тела Планк доложил 19 декабря 1900 на заседании Берлинского физического общества. Этот день по праву называют днем рождения квантовой теории. Изменения, начало которым он положил, явились поистине революционными. Их масштабы прекрасно понимал и сам Планк, писавший о кванте действия (так он называл множитель h, численное значение которого им было найдено, известный теперь как «постоянная Планка»), что это «... либо фиктивная величина, и тогда весь вывод закона излучения был в принципе ложным и представлял собой всего лишь пустую игру в формулы, лишенную смысла, либо же вывод закона излучения опирается на некую физическую реальность, и тогда квант действия должен приобрести фундаментальное значение в физике и означает собой нечто совершенно новое и неслыханное, что должно произвести переворот в нашем физическом мышлении, основывавшемся со времен Лейбница и Ньютона, открывших дифференциальное исчисление, на гипотезе непрерывности всех причинных соотношений».
ПЛАТОН (428 или 427 до н. э. — 348 или 347), древнегреческий философ. Ученик Сократа, ок. 387 основал в Афинах школу (см. Академия платоновская). Идеи (высшая среди них — идея блага) — вечные и неизменные умопостигаемые прообразы вещей, всего преходящего и изменчивого бытия; вещи — подобие и отражение идей. Познание есть анамнесис — воспоминание души об идеях, которые она созерцала до ее соединения с телом. Любовь к идее (Эрос) — побудительная причина духовного восхождения. Идеальное государство — иерархия трех сословий: правители-мудрецы, воины и чиновники, крестьяне и ремесленники. Платон интенсивно разрабатывал диалектику и наметил развитую неоплатонизмом схему основных ступеней бытия. В истории философии восприятие Платона менялось: «божественный учитель» (античность); предтеча христианского мировоззрения (средние века); философ идеальной любви и политический утопист (эпоха Возрождения). Сочинения Платона — высокохудожественные диалоги; важнейшие из них: «Апология Сократа», «Федон», «Пир», «Федр» (учение об идеях), «Государство», «Теэтет» (теория познания), «Парменид» и «Софист» (диалектика категорий), «Тимей» (натурфилософия).
ПОПОВ Александр Степанович (4 (16) марта 1859, пос. Турьинские Рудники Верхотурского уезда Пермской губернии, ныне Краснотурьинск Екатеринбургской области – 31 декабря 1905 (13 января 1906), Санкт-Петербург), российский физик и электротехник, один из пионеров применения электромагнитных волн в практических целях, в том числе для радиосвязи.
С 1889 воспроизводя на лекциях и докладах опыты Герца, Попов видоизменил их, стремясь найти наиболее чувствительный индикатор «электрических волн». В 1894 занялся изучением влияния электрических разрядов на проводимость металлических порошков и сконструировал первый свой (изобретенный Кальцекки-Онести и Э. Бернулли) достаточно чувствительный когерер для обнаружения электромагнитных волн – в виде стеклянной трубки с металлическими опилками. Под действием электромагнитных волн проводимость опилок резко увеличивается.
К началу 1895 Попов создал «грозоотметчик», который позволял надежно регистрировать приближение грозы на расстоянии до 30 км. В это устройство входили когерер — приспособление со звонком для автоматического восстановления чувствительности когерера встряхиванием, реле, приводившее в действие звонок, и даже приемная антенна в виде длинного вертикального провода. Таким образом, Попов создал прототип первой приемной радиостанции. Он продемонстрировал его 25 апреля (7 мая) 1895 на заседании физического отделения Российского физико-химического общества и прочитал доклад «Об отношении металлических порошков к электрическим колебаниям», причем высказал мысль о возможности применения грозоотметчика для передачи сигналов на расстояние.
12 (24) марта 1896 на заседании физического отделения Российского физико-химического общества Попов при помощи своих приборов наглядно продемонстрировал передачу сигналов на расстояние 250 м, передав первую в мире радиограмму из двух слов «Генрих Герц».
Несколько позднее создал подобные же приборы и провел с ними эксперименты итальянский физик и инженер Г. Маркони. В 1897 он получил патент на применение электромагнитных волн для беспроволочной связи. Благодаря большим материальным ресурсам и энергии Маркони, не имевший специального образования, добился широкого применения нового способа связи. Попов же свое открытие не запатентовал.
В начале 1897 Попов осуществил радиосвязь между берегом и кораблем, а в 1898 дальность радиосвязи между кораблями была доведена до 11 км. Большой победой Попова и едва зародившейся радиосвязи было спасение 27 рыбаков с оторванной льдины, унесенной в море. Радиограмма, переданная на расстояние 44 км, позволила ледоколу своевременно выйти в море. Работы Попова были отмечены золотой медалью на Всемирной выставке 1900 в Париже. В 1901 на Черном море Попов в своих опытах достигал дальности в 148 км.
К этому времени в Европе уже существовала радиопромышленность. Работы Попова в России не получили развития. Отставание России в этой области угрожающе нарастало. И когда в 1905 в связи с начавшейся русско-японской войной потребовалось большое количество радиостанций, ничего не оставалось, как заказать их иностранным фирмам.
Отношения Попова с руководством морского ведомства обострились, и в 1901 он переехал в Петербург, где был профессором, а затем первым выборным директором Электротехнического института. Заботы, связанные с выполнением ответственных обязанностей директора, совсем расшатали здоровье Попова, и он скоропостижно скончался от кровоизлияния в мозг.
Даже получив большую известность, Попов сохранил все основные черты своего характера: скромность, внимание к чужим мнениям, готовность идти навстречу каждому и посильно помогать нуждающимся в помощи.
Когда работы по применению радиосвязи на кораблях привлекли к себе внимание заграничных деловых кругов, Попов получил ряд предложений переехать для работы за границу. Он решительно отверг их. Вот его слова: «Я горд тем, что родился русским. И если не современники, то, может быть, потомки наши поймут, сколь велика моя преданность нашей родине и как счастлив я, что не за рубежом, а в России открыто новое средство связи».
ПТОЛЕМЕЙ (Птоломей) Клавдий (ок. 90 — ок. 160), древнегреческий ученый. Разработал математическую теорию движения планет вокруг неподвижной Земли, позволявшую предвычислить их положение на небе. Вместе с теорией движения Солнца и Луны она составила т. н. птолемееву систему мира. Система Птолемея изложена в его главном труде «Альмагест» — энциклопедии астрономических знаний древних. В «Альмагесте» приведены также сведения по прямолинейной и сферической тригонометрии, впервые дано решение ряда математических задач. В области оптики исследовал преломление и рефракцию света. В труде «География» дал свод географических сведений античного мира.
ПУАССОН (Poisson) Симеон Дени (1781-1840), французский математик, механик и физик, иностранный почетный член Петербургской АН (1826). Труды по математическому анализу, теории вероятностей, математической физике, теоретической и небесной механике, теории упругости, гидродинамике и др.
О научных трудах Пуассона рассказывать очень непросто. Большая часть его работ (а всего их около 350) относится к математической физике, поэтому подробно обсудить здесь даже основные результаты этих работ мы не сможем. В то же время не упомянуть хотя бы о наиболее известных и важных работах Пуассона просто нельзя.
Одно из главных понятий в электростатике — это понятие об электрическом потенциале. Потенциал всегда зависит от величины и расположения зарядов в пространстве. Пуассон в 1811 вывел дифференциальное уравнение, связывающее потенциал с плотностью распределения зарядов. Простейшие задачи в электростатике можно, конечно, решать и не пользуясь уравнением Пуассона. Но для сколько-нибудь сложных задач, когда есть много зарядов и расположены они произвольным образом, рассчитать зависимость потенциала от координат можно только с помощью этого уравнения. Уравнение Пуассона, вместе с результатами Эйлера, Гаусса, Лапласа, Грина и Остроградского, лежит теперь в основе современной теории потенциала — важного раздела математической физики.
Значительны заслуги Пуассона в теоретической механике, в механике сплошных сред, теории теплопроводности, теории упругости. Изучал он вопросы, связанные с адиабатическим изменением состояния газа, с атмосферным электричеством, с измерением горизонтальной составляющей земного магнитного поля, с природой сил поверхностного натяжения, с распространением волн в глубоком бассейне. Были у Пуассона и «артиллерийские» заслуги. Он подробно исследовал задачу об отклонении снарядов от вертикальной плоскости, проведенной через направление ствола орудия. В астрономии он занимался исследованием устойчивости движения планет Солнечной системы, рассматривал задачи о возмущении планетных орбит и о движении Земли вокруг ее центра тяжести.
Ему принадлежит также много результатов в области чистой математики, особенно в дифференциальном и интегральном исчислении (интеграл Пуассона, формула суммирования Пуассона и др.), в теории дифференциальных и разностных уравнений. Нельзя, наконец, не сказать о существенном вкладе Пуассона в теорию вероятностей. Вслед за Лапласом он уделял большое внимание применениям теории вероятностей в...уголовном судопроизводстве. Один из его больших трактатов так и называется «Исследования о вероятности приговоров в уголовных и гражданских делах». Сейчас это может вызвать улыбку, но нельзя забывать, что и в этой работе решались вполне конкретные и строгие математические задачи. В работах Пуассона очень часто видно стремление связать формальные математические рассуждения не только с естественными науками, но и с общественно важными вопросами. Таков и его трактат «О преимуществе банкира при игре в тридцать и сорок». Вряд ли нужно осуждать Пуассона за стремление «помочь обогащению банкиров», лучше вспомнить о том, что теория игр, в том числе и азартных, была очень существенной для становления и развития теории вероятностей, а сейчас и сама стала самостоятельным и жизненно необходимым разделом математической науки.
И, конечно, всем, кто изучает теорию вероятностей или использует для своих целей вероятностные расчеты, знакомо распределение Пуассона. Так называется формула, позволяющая для многих задач вычислять распределение случайных величин. С помощью этой формулы можно, например, подсчитать вероятность того, что в коллективе, состоящем из 1999 человек, ровно k человек родились в тот же день, что и Пуассон (k = 0,1,2,3,4,....). Можно вычислить как распределены опечатки в какой-нибудь книге при условии, что существует постоянная вероятность того, что любая буква будет набрана наборщиком неправильно. Хорошо описывается формулой Пуассона и процесс радиоактивного распада, скажем, радия.(Этот процесс заключается в превращении ядра атома радия в ядро атома радона с испусканием альфа-частицы. Распад каждого отдельного ядра происходит независимо от состояния других ядер, и вероятность такого распада в единицу времени есть величина постоянная). Это лишь некоторые примеры задач, в которых мы используем формулу для распределения Пуассона для получения интересующего нас результата, либо сама природа случайных процессов приводит нас к зависимостям, описываемым этой формулой.
С самого раннего детства Пуассон был связан с физикой колебаний. Связан, как ни удивительно это звучит, в буквальном смысле слова. Дело в том, что нянька маленького Симеона Дени, по-видимому, не отличалась особым прилежанием. Чтобы иметь с малышом поменьше хлопот, она обвязывала младенца вокруг пояса широким полотенцем и подвешивала его к большой горизонтальной балке. Так, качаясь в виде своеобразного маятника, маленький мальчик проводил много часов. Будучи взрослым, Пуассон шутил, говоря, что сам Бог велел ему заниматься теорией колебаний.
Одна из решенных им в этой области задач касалась вычисления частот колебаний небольших металлических или стеклянных пластин, жестко закрепленных в одной точке. Опыты с такими пластинами проделывались немецким физиком Эрнстом Хладни, и первая информация о них относится к 1787. В 1809 Хладни продемонстрировал эти опыты членам Французского Национального института. Все смотрели на них с изумлением, не сразу понял их смысл даже Лаплас. Сами опыты заключались в следующем. На закрепленную в центре горизонтальную пластинку сверху равномерно насыпается очень мелкий песок. Для простоты можно ограничиться случаем, когда пластинки квадратные или круглые. Если слегка коснуться пластинки в той или иной точке пальцем и одновременно возбудить колебания пластинки, проведя поперек нее смычком, то песок перераспределится, собираясь вдоль «узловых линий». Наблюдаемые песчаные фигуры (их называют хладниевыми) могут иметь сложную, но всегда достаточно симметричную конфигурацию. Заслуга Пуассона при объяснении хладниевых фигур состоит в том, что он установил связь частоты колебаний пластин с числом узловых линий.
По праву можно считать Пуассона и одним из создателей теории упругих деформаций. Нельзя не вспомнить еще о коэффициенте Пуассона, который связывает относительные изменения продольных и поперечных размеров деформируемого тела. При любом расчете деформаций, допустимых нагрузок и прочности конструкций обязательно нужно знать характеристики материалов, важнейшими из них являются «упругие модули» и «коэффициент Пуассона». Можно удивляться и восхищаться широтой научных интересов, многообразием и глубиной научных исследований, огромным трудолюбием тех, кто создавал основы физической и математической науки. Физика и математика в 20 столетии ушли далеко вперед от тех представлений, идей и проблем, которые волновали ученых времен Французской революции. Замечательно то, что многие идеи и достижения Пуассона и его современников вошли в науку навсегда.
РЕЗЕРФОРД Эрнест (1871-1937), английский физик, один из создателей учения о радиоактивности и строении атома, основатель научной школы, иностранный член-корреспондент РАН (1922) и почетный член АН СССР (1925). Директор Кавендишской лаборатории (с 1919). Открыл (1899) альфа- и бета-лучи и установил их природу. Создал (1903, совместно с Ф. Содди) теорию радиоактивности. Предложил (1911) планетарную модель атома. Осуществил (1919) первую искусственную ядерную реакцию. Предсказал (1921) существование нейтрона. Нобелевская премия (1908).
Итоги научных поисков и открытий Резерфорда составили содержание двух его книг. Первая из них называлась «Радиоактивность» и вышла в 1904. Через год вышла вторая — «Радиоактивные превращения». А их автор уже начинал новые исследования. Он уже понял, что радиоактивное излучение исходит из атомов, но место его возникновения оставалось абсолютно неясным. Нужно было исследовать устройство атома. И здесь Резерфорд обратился к методике, с которой он начинал работу у Дж. Дж. Томсона — к просвечиванию альфа-частицами. В опытах исследовалось, как поток таких частиц проходит через листочки тонкой фольги.
Первая модель атома была предложена, когда стало известно, что электроны имеют отрицательный электрический заряд. Но они входят в атомы, которые в целом электронейтральны; что же является носителем положительного заряда? Дж. Дж.Томсон предложил для решения этой проблемы такую модель: атом — нечто вроде положительно заряженной капли радиусом в стомиллионную долю (10-8) сантиметра, внутри которой находятся крохотные отрицательно заряженные электроны. Под действием кулоновских сил они стремятся занять положение в центре атома, но если что-то выведет их из этого положения равновесия, они начинают совершать колебания, что сопровождается излучением (таким образом, модель объясняла и известный тогда факт существования спектров излучения). Из опытов уже было известно, что расстояния между атомами в твердых телах примерно такие же, как и размеры атомов. Поэтому казалось очевидным, что альфа-частицы почти не могут пролететь даже сквозь тонкую фольгу, подобно тому, как камень не пролетит сквозь лес, деревья в котором растут почти вплотную друг к другу. Но первые же опыты Резерфорда убеждали, что это не так. Подавляющее большинство альфа-частиц пронизывало фольгу, даже почти не отклоняясь, и лишь у некоторых это отклонение наблюдалось, порой даже весьма значительное.
И здесь вновь проявилась исключительная интуиция Резерфорда и его умение понимать язык природы. Он решительно отказывается от модели Томсона и выдвигает принципиально новую модель. Она получила название планетарной: в центре атома, подобно Солнцу в Солнечной системе — ядро, в котором, несмотря на его относительно малые размеры, сосредоточена вся масса атома. А вокруг него, подобно планетам, двигающимся вокруг Солнца, вращаются электроны. Их массы значительно меньше, чем у альфа-частиц, которые поэтому почти не откланяются, пронизывая электронные облака. И только когда альфа-частица пролетает близко от положительно заряженного ядра, кулоновская сила отталкивания может резко искривить ее траекторию.
Формула, которую вывел Резерфорд, опираясь на эту модель, прекрасно согласовалась с данными эксперимента. [В 1903 идею планетарной модели атома доложил в Токийском физико-математическом обществе японский теоретик Хантаро Нагаока, назвавшей эту модель «сатурноподобной», но его работа (о которой Резерфорд не знал) не получила дальнейшего развития.]
Но планетарная модель не согласовывалась с законами электродинамики!
Эти законы, установленные, в основном, трудами Фарадея и Максвелла, утверждают, что ускоренно движущийся заряд излучает электромагнитные волны и поэтому теряет энергию. Электрон в атоме Резерфорда движется ускоренно в кулоновском поле ядра и, как показывает теория Максвелла, должен был бы, потеряв примерно за десятимиллионную долю секунды всю энергию, упасть на ядро. Это называется проблемой радиационной неустойчивости резерфордовской модели атома, и Резерфорд ее отчетливо понимал.
Планетарная модель атома тем временем все больше занимала его мысли. И вот в марте 1912 начинается дружба и сотрудничество Резерфорда с Нильсом Бором. Бор — и это явилось его величайшей научной заслугой — внес в планетарную модель Резерфорда принципиально новые черты — идею квантов. Эта идея возникла еще в начале века благодаря работам великого Макса Планка, понявшего, что для объяснения законов теплового излучения нужно допустить, что энергия уносится дискретными порциями — квантами. Идея дискретности была органически чужда всей классической физике, в частности, теории электромагнитных волн, но вскоре Альберт Эйнштейн, а затем и Артур Комптон показали, что эта квантовость проявляется и при поглощении, и при рассеянии.
Бор выдвинул «постулаты», которые на первый взгляд выглядели внутренне противоречивыми: в атоме существуют такие орбиты, двигаясь по которым электрон, вопреки законам классической электродинамики, не излучает, хотя и имеет ускорение; Бор указал правило нахождения таких стационарных орбит; кванты излучения появляются (или поглощаются ) только при переходе электрона с одной орбиты на другую, в соответствии с законом сохранения энергии. Атом Бора — Резерфорда, как его по праву начали называть, не только принес решение многих проблем, он ознаменовал прорыв в мир новых идей, что вскоре привело к радикальному пересмотру многих представлений о материи и ее движении. Работу Нильса Бора «О структуре атомов и молекул» направил в печать Резерфорд.
РЕЙХЕНБАХ (Reichenbach) Ханс (1891-1953), немецкий логик и философ, представитель логического позитивизма. В центре исследований — проблема причинности. Развивал вероятностную логику, которую использовал для интерпретации квантовой механики.
РЕНТГЕН (Рентген) Вильгельм Конрад (1845-1923), немецкий физик. Открыл (1895) рентгеновские лучи, исследовал их свойства. Труды по пьезо- и пироэлектрическим свойствам кристаллов, магнетизму. Нобелевская премия (1901).
Конечно, наиболее значительным достижением Рентгена было открытие им X-лучей, которые носят теперь его имя, но ему принадлежат и другие важные работы. Из них укажем исследования сжимаемости жидкостей, внутреннего трения в них, поверхностного натяжения, поглощения газами инфракрасных лучей, изучение пьезо- и пироэлектрических явлений в кристаллах, рекордные по точности измерения отношения теплоемкостей при постоянных давлениях и объемах, двойного лучепреломления в жидкостях и кристаллах, фотоионизации и ряда других вопросов. Можно еще выделить открытие «намагничивание движением» — возникновения магнитного поля при движении диэлектрических тел в электрическом поле. Но все эти выполненные тщательнейшим образом исследования по их значимости оказались несравнимыми с основным открытием Рентгена, хотя и высказывалось мнение (заведомо несправедливое, конечно), что оно было сделано Рентгеном случайно. 8 ноября 1895 в Вюрцбурге Рентген, работая с разрядной трубкой обратил внимание на такое явление: если обернуть трубку плотной черной бумагой или картоном, то на расположенном возле экране, смоченном платино-синеродистым барием, наблюдается флуоресценция. Рентген понял, что флуоресценция вызывается каким-то излучением, возникающем в том месте в разрядной трубке, на которое попадают катодные лучи. Теперь мы знаем, что катодные лучи — это вырывающиеся из катода электроны; налетая на препятствие, они резко тормозятся, и это приводит к излучению электромагнитных волн, частота которых значительно больше, чем у волн оптического диапазона.
Открытие Рентгена радикально изменило представления о шкале электромагнитных волн. За фиолетовой границей оптической части спектра и даже за границей ультрафиолетовой области обнаружились области еще более коротковолнового электромагнитного — рентгеновского — излучения, примыкающего далее к гамма-диапазону.
Рентген всего этого не знал, но он заметил, что X-лучи легко проходят через непрозрачные для света слои вещества и способны вызывать флуоресценцию экранов и почернение фотопластинок. Он понял, что это открывало невиданные ранее возможности, особенно в медицине. Лучи Рентгена, позволявшие увидеть то, что прежде было невидимым, произвели на его современников сильнейшее впечатление. По научной и прикладной значимости (от уже упоминавшейся медицины до физики сред, в частности, кристаллов), рентгеновские лучи стали неоценимо важными, но, может быть, не менее важным было и то, что они качественно обогатили наши представления о материи. Рентген был классиком во всех смыслах этого слова, но его труды оказали огромное влияние как на науку, так и на технику и наших дней.
РЕОМЮР (Reaumur) Рене Антуан (1683-1757), французский естествоиспытатель, иностранный почетный член Петербургской АН (1737). Труды по регенерации, физиологии, биологии колоний насекомых. Предложил температурную шкалу, названную его именем.
РИХМАН Георг Вильгельм (1711-53), российский физик, академик Петербургской АН (1741). Положил начало исследованиям электричества в России, ввел его количественные измерения. Совместно с М. В. Ломоносовым исследовал атмосферное электричество. Во время эксперимента погиб от удара молнии. Труды по калориметрии.
ТОМСОН (Thomson) Джордж Паджет (1892-1975, английский физик, сын Дж. Дж. Томсона. Открыл (1927, независимо от К. Дэвиссона и Л. Джермера) дифракцию электронов. Нобелевская премия (1937, совместно с Дэвиссоном).
ТОМСОН Уильям (с 1892 за научные заслуги получил титул барона Кельвина, Kelvin) (1824-1907), английский физик, член (1851) и президент (1890-95) Лондонского королевского общества, иностранный член-корреспондент (1877) и иностранный почетный член (1896) Петербургской АН. Труды по многим разделам физики (термодинамика, теория электрических и магнитных явлений и др.). Дал одну из формулировок второго начала термодинамики, предложил абсолютную шкалу температур (шкала Кельвина). Экспериментально открыл ряд эффектов, названных его именем (в т. ч. эффект Джоуля — Томсона). Активный участник осуществления телеграфной связи по трансатлантическому кабелю, установил зависимость периода колебаний контура от его емкости и индуктивности. Изобрел многие электроизмерительные приборы, усовершенствовал ряд мореходных инструментов.
Термодинамика была в то время, к которому относится работы Томсона, одним из «столпов» физики, и тем примечательнее, что ему удалось внести в нее нечто принципиально новое. Речь идет о «втором начале» термодинамики. Его первая формулировка была в 1824 г. предложена С. Карно. Томсон указал на необходимость модернизации и (независимо от Р. Клаузиуса) предложил новую его формулировку: «В природе невозможен процесс, единственным результатом которого была бы механическая работа, совершаемая за счет охлаждения теплового резервуара». Иногда это формулируется как утверждение о невозможности вечного двигателя второго рода. Одним из выводов из этого явилась идея о «тепловой смерти» Вселенной: раз механическая энергия может полностью перейти в тепловую, а тепловая в механическую — нет, то, по мнению Томсона, неизбежно, в конце концов, вся энергия перейдет в тепловую и механические движения прекратятся. Эффективная критика этого вывода появилась только в работах Л. Больцмана.
В 1866 Томсону был присвоен титул лорда. Фамилия лорда Кельвина увековечена в названии абсолютной шкалы температур — шкалы Кельвина. В природе существует минимально возможная температура. По классической молекулярной физике при этой минимальной температуре — при абсолютном нуле — прекращается тепловое движение. Именно от этого абсолютного нуля и отсчитываются температуры по шкале Кельвина.
Зародившаяся под прямым влиянием техники, термодинамика всегда сохраняла с ней связь, хотя не всегда сиюмоментную. Примером тому может служить эффект, который был в 1853-54 гг. открыт Томсоном и Джоулем. Он состоит в изменении температуры при стационарном адиабатическом (т.е. при отсутствии теплообмена ) протекании газа через пористую перегородку. У одних газов при этом температура убывает, у других — возрастает; как было понято позже, это определяется тонкими деталями взаимодействия между молекулами. Этот эффект, может показаться поначалу представляющим только «академический» интерес, но он оказался важным для получения очень низких температур.
Томсон широко применял термодинамику для объяснения и предсказания новых эффектов. В 1855 г. он начинает исследования явлений, называемых термоэлектрическими и строит их термодинамическую теорию. Уже сам этот термин говорит о переплетении тепловых и электрических эффектов. Некоторые из таких явлений уже были известны ранее, но были открыты и новые.
Один из таких эффектов даже был назван в честь Томсона. Он состоит в выделении или поглощении тепла при пропускании электрического тока через участки проводника, в которых имеются неоднородности температуры. Уместно подчеркнуть, что это открытие произошло задолго до того, как была понята «микроскопическая» природа электрического тока, до появления электронной теории, позволившей дать термоэлектрическим явлениям наглядное истолкование.
К работам по термоэлектричеству Томсон привлекал и студентов, что потребовало создания первой (в университете в Глазго, да и во всех других университетах) учебно-научной лаборатории. Исследования по электричеству приобрели особую актуальность после появления трансатлантического кабеля. В его работе проявились дефекты, понять и устранить причины которых без вмешательства ученых не удавалось. Томсон построил теории распространения электрических импульсов по проводам. Он первым, являясь крупнейшим специалистом по электромагнетизму, понял, какую роль играет не только сопротивление проводов, но и индуктивность и электрическая емкость всей цепи.
Им были рассмотрены электрические токи в так называемом колебательном контуре — системе из последовательно соединенного конденсатора и катушки самоиндукции. Была, в частности, выведена знаменитая формула Томсона — один из краеугольных камней сегодняшней электро- и радиотехники, согласно которой частота собственных колебаний в таком контуре пропорциональна квадратному корню из произведения индуктивности катушки на емкость конденсатора. Экспедиция по прокладке кабеля вызвала интерес Томсона к морским делам, что привело его к усовершенствованиям компаса и лота, а также к новым исследованиям по гидродинамике и теории волн.
Томсон вообще много занимался прикладными вопросами физики и проблемами экспериментальной техники. Ему принадлежит изобретение и усовершенствование таких приборов как зеркальный гальванометр, квадрантный и абсолютный электрометр и др. Его преподавательская деятельность, его книги и статьи (в частности, «Электричество» и «Теплота» в Британской энциклопедии) воспитали несколько поколений физиков и инженеров во многих странах.
Будучи признанным авторитетом в области термодинамики, Кельвин оказался причастным и к становлению молекулярно-кинетической теории. Важное место в этой теории занимает величина N, именуемая числом Авогадро — число молекул в одном моле вещества. Один из путей ее экспериментального определения связан с проблемой голубого цвета неба — проблеме рассеяния света в атмосфере.
Лорд Кельвин не чурался и узко прикладных задач. Так, в числе многих других, он получил и патент на изобретение оригинального водопроводного крана.
ТОРРИЧЕЛЛИ (Torricelli) Эванджелиста (1608-47), итальянский физик и математик. Ученик Г. Галилея. Изобрел ртутный барометр, открыл существование атмосферного давления и вакуума (торричеллиева пустота). Вывел формулу, которая была названа его именем.
УМОВ Николай Алексеевич [23 января (4 февраля) 1846, Симбирск, ныне Ульяновск — 15 (28) января 1915, Москва], российский физик-теоретик. Окончил Московский университет (1867), был оставлен в университете для подготовки к профессорскому званию. В 1871-93 преподавал в Новороссийском университете (Одесса), с 1975 — профессор. Профессор Московского университета (после смерти Столетова в 1896 возглавил кафедру физики). С 1911 работал в Московском обществе исследователей природы, которое возглавлял с 1897, и в «Леденцовском обществе». Основные работы в области теории колебаний, электричества, оптики, земного магнетизма, молекулярной физики. Автор учения о движении энергии (1874, докторская диссертация «Уравнение движения энергии в телах»). Ввел понятия скорости и направления движения энергии (вектор Умова — Пойнтинга), потока энергии, плотности энергии в данной точке среды, пространственной локализации потока энергии. Решил задачу о распределении пространственных токов на поверхности любого типа (1875). Раскрыл физический смысл многих сложных формул К. Гаусса в теории земного магнетизма. Предсказал сложность атомов и их эволюцию (1888).
ФАЛЕС (Thales) (ок. 640 — ок. 546), древнегреческий философ и ученый, основатель так называемой ионийской (милетской) школы, родоначальник античной философии и науки; в древности почитался как один из «Семи мудрецов». Аристотель начинает с Фалеса историю метафизики, Евдем — историю астрономии и геометрии.
Происходил из города Милета в Малой Азии, принадлежа к аристократическому роду. Был близок милетскому тирану Фрасибулу и связан с храмом Аполлона Дидимского, покровителя морской колонизации. По свидетельству Диогена Лаэртского, бывал в Египте и жил у жрецов, изучая астрономию и геометрию. Видимо, Фалес использовал достижения древневосточной науки египтян, вавилонян и финикийцев. Диоген Лаэртский сообщает, что Фалес установил продолжительность года и разделил его на 365 дней. По словам Геродота, в 585 до н. э. мудрец предсказал полное солнечное затмение.
Имя Фалеса уже в 5 в. до н. э. стало нарицательным для мудреца. Мудрость его истолковывалась по-разному: то как практическая смекалка и изобретательность, то как созерцательная отрешенность (Платон). Предание рисует Фалеса купцом и предпринимателем, гидроинженером, тонким дипломатом и мудрым политиком, провидцем, предсказывающим погоду и затмения.
Из приписываемых Фалесу сочинений ни одно до нас не дошло. Содержание их известно только в передаче более поздних авторов. Аристотель приводит 4 тезиса, которые могут восходить к устному учению Фалеса: 1) все произошло из воды; 2) земля плавает по воде подобно дереву; 3) все полно богов или душа размешана во вселенной; 4) магнит имеет душу, так как движет железо. Таким образом, Фалес впервые сформулировал две основные проблемы греческой натурфилософии: проблемы начала и всеобщего. Все многообразие явлений и вещей он сводил к единой основе-первоначалу, которым Фалес считал воду. Отличая душу от тела, душевную жизнь от процессов природы, Фалес, вслед за Гомером, представлял душу в виде тонкого эфирного вещества. Он считал, что душа, как активная сила и вместе с тем носитель разумности и справедливости, причастна к божественному (разумному и прекрасному) строю вещей.
По свидетельству Прокла, Фалес первый стал доказывать геометрические теоремы; ему принадлежат доказательства следующих положений: 1) круг делится диаметром пополам; 2) в равнобедренном треугольнике углы при основании равны; 3) при пересечении двух прямых образуемые ими вертикальные углы равны; 4) два треугольника равны, если два угла и сторона одного из них равны двум углам и соответствующей стороне другого.
ФАРАДЕЙ (Faraday) Майкл (1791-1867), английский физик, основоположник учения об электромагнитном поле, иностранный почетный член Петербургской АН (1830). Обнаружил химическое действие электрического тока, взаимосвязь между электричеством и магнетизмом, магнетизмом и светом. Открыл (1831) электромагнитную индукцию — явление, которое легло в основу электротехники. Установил (1833-34) законы электролиза, названные его именем, открыл пара- и диамагнетизм, вращение плоскости поляризации света в магнитном поле (эффект Фарадея). Доказал тождественность различных видов электричества. Ввел понятия электрического и магнитного поля, высказал идею существования электромагнитных волн.
Закон электромагнитной индукции. Электролиз
В 1830, несмотря на стесненное материальное положение, Фарадей решительно отказывается от всех побочных занятий, выполнения любых научно-технических исследований и других работ (кроме чтения лекций по химии), чтобы целиком посвятить себя научным изысканиям. Вскоре он добивается блестящего успеха: 29 августа 1831 открывает явление электромагнитной индукции — явление порождения электрического поля переменным магнитным полем. Десять дней напряженнейшей работы позволили Фарадею всесторонне и полностью исследовать это явление, которое без преувеличения можно назвать фундаментом, в частности, всей современной электротехники. Но сам Фарадей не интересовался прикладными возможностями своих открытий, он стремился к главному — исследованию законов Природы. Открытие электромагнитной индукции принесло Фарадею известность. Но он по-прежнему был очень стеснен в средствах, так что его друзья были вынуждены хлопотать о предоставлении ему пожизненной правительственной пенсии. Эти хлопоты увенчались успехом лишь в 1835. Когда же у Фарадея возникло впечатление, что министр казначейства относится к этой пенсии как к подачке ученому, он направил министру письмо, в котором с достоинством отказался от всякой пенсии. Министру пришлось просить извинения у Фарадея.
В 1833-34 Фарадей изучал прохождение электрических токов через растворы кислот, солей и щелочей, что привело его к открытию законов электролиза. Эти законы (Фарадея законы) впоследствии сыграли важную роль в становлении представлений о дискретных носителях электрического заряда. До конца 1830-х гг. Фарадей выполнил обширные исследования электрических явлений в диэлектриках.
Даже далеко не полный перечень того, что внес в науку Фарадей, дает представление об исключительном значении его трудов. В этом перечне, однако, отсутствует то главное, что составляет громадную научную заслугу Фарадея: он первым создал полевую концепцию в учении об электричестве и магнетизме. Если до него господствовало представление о прямом и мгновенном взаимодействии зарядов и токов через пустое пространство, то Фарадей последовательно развивал идею о том, что активным материальным переносчиком этого взаимодействия является электромагнитное поле. Об этом прекрасно написал Д. К. Максвелл, ставший его последователем, развивший далее его учение и облекший представления об электромагнитном поле в четкую математическую форму: «Фарадей своим мысленным оком видел силовые линии, принизывающие все пространство. Там, где математики видели центры напряжения сил дальнодействия, Фарадей видел промежуточный агент. Где они не видели ничего, кроме расстояния, удовлетворяясь тем, что находили закон распределения сил, действующих на электрические флюиды, Фарадей искал сущность реальных явлений, протекающих в среде».
Точка зрения на электродинамику с позиций концепции поля, основоположником которой был Фарадей, стала неотъемлемой частью современной науки. Труды Фарадея ознаменовали наступление новой эры в физике.
ФАРЕНГЕЙТ (Fahrenheit) Габриель Даниель (1686-1736), немецкий физик. Работал в Великобритании и Нидерландах. Изготовил спиртовой (1709) и ртутный (1714) термометры. Предложил температурную шкалу, названную его именем.
ФЕРМА (Пьер Fеrmat) — знаменитый французский математик 1601 — 65). Сын торговца; изучил законоведение и с 1631 г. до конца жизни был советником Тулузского парламента. Научные сведения Ф., и притом не только в области наук математических, поражали его соотечественников разносторонностью. Владея южноевропейскими языками и глубоко изучив латинский и греческий, Ф. был гуманистом и поэтом, писавшим французские и латинские стихи.
ФЕРМИ (Fermi) Энрико (1901-54), итальянский физик, один из создателей ядерной и нейтронной физики, основатель научных школ в Италии и США, иностранный член-корреспондент АН СССР (1929). В 1938 эмигрировал в США. Разработал квантовую статистику (статистика Ферми — Дирака; 1925), теорию бета-распада (1934). Открыл (с сотрудниками) искусственную радиоактивность, вызванную нейтронами, замедление нейтронов в веществе (1934). Построил первый ядерный реактор и первым осуществил в нем (2.12.1942) цепную ядерную реакцию. Нобелевская премия (1938).
ФРЕНЕЛЬ (Fresnel) Огюстен Жан (1788-1827), французский физик, один из основоположников волновой оптики. Создал (1818) теорию дифракции света, положив в основу принцип Гюйгенса и интерференцию волн (принцип Гюйгенса — Френеля). Доказал (1821) поперечность световых волн, объяснил поляризацию света (первая теория кристаллооптических явлений). Создал зеркала и линзы, названные его именем.
Первую свою работу по дифракции света Ф. передал парижской академии в 1815 г.; в следующие 2 года он дал ряд дополнений к ней и 29 июля 1818 г. представил академии сводку всех своих исследований по дифракции в виде работы «Memoire sur la difiraction de la lumiere». Отчет об этой работе поручен был Арого и Пуансо; из них первый с восторгом приветствовал исследование молодого ученого, и, под влиянием Арого, работа Ф. награждена была в 1819 г. премией академии. Ученый мир находился в то время под влиянием работ Био, который с большим остроумием давал объяснение явлений дифракции, исходя из представлений Ньютоновой теории истечения. Тем более поразила всех работа Ф., который воспользовался почти забытой теорией волнообразного распространения световых колебаний в эфире. Объяснение явления дифракции с точки зрения волнообразной теории дано было еще Юнгом (1804 г.), но последний ошибочно предполагал, что дифракция является следствием интерференции лучей непосредственно прошедших и лучей отраженных от края препятствия. Ф. же, воспользовавшись принципом Гюйгенса, ввел в рассмотрение волны, исходящие из всякой точки отверстия, и явление дифракции объяснил совокупным действием всех этих волн на эфирные частицы. Расчет этого совокупного действия представлял значительные математические трудности, который Ф. блестяще преодолел. Теория Ф. была столь совершенна, что даже противник его Био, всеми силами стремившийся поддержать теорию истечения, должен был признать, что Ф. удалось «в своих формулах теперь и навсегда установить взаимозависимость этих явлений» (дифракции). Применение Юнгова принципа интерференции дало затем Ф. возможность объяснить старое противоречие между прямолинейным распространением света и принципом Гюйгенса. Упомянутые выше работы Ф. не подорвали еще значения теории истечения; последняя могла почти столь же стройно объяснить дифракцию, но она не сумела вовлечь в свою систему явления поляризации, который Ф. в своих последующих работах блестяще истолковал с точки зрения эфирной теории. В то время открыты были Арого явления хроматической поляризации и с 1816 по 1819 г. Ф. один и совместно с Арого исследует эти явления, рассматривая их как интерференцию поляризованного света. Основной результата Ф., что лучи, поляризованные в перпендикулярных плоскостях, не могут интерферировать привел его к в высшей степени важному выводу — к предположению о поперечности световых колебаний. Это предположение было очень смело и на него обрушились Лаплас, Пуассон и другие, которые не могли допустить возможность поперечных колебаний в однородной среде, обладающий свойствами жидкости. Между тем это предположение оказывалось до того плодотворным при объяснении всех явлений поляризации, что Ф. не отказался от него, но в ряде работ («Considerations mecaniques sur la polarisation de la lumiere» и «Memoire sur la double refraction», оба в 1821 г.) старается возможно внимательно и точно обосновать его. В мемуаре о двойном лучепреломлении Ф., объясняет явления в одноосных и двуосных кристаллах, предполагая в них упругость эфира по разным направлениям неодинаковой, вычисляет форму волны в двуосных кристаллах; для подтверждения своих выводов он производит исследования над упругостью и показывает, как однородные тела, под влиянием сжатия, могут сделаться двупреломляющими. Этот мемуар по поручению академии рассматривала в 1822 г. комиссия из Арого, Ампера и Фурье, которая, признав чрезвычайную важность работ Ф., все же не могла согласиться с предположением о поперечности световых колебаний. Еще раньше (1817 — 1818) при рассмотрении явления полного внутреннего отражения Ф. пришел к представлению об поляризованных эллиптически и по кругу лучах и в 1825 г. блестяще применил их к объяснению открытого Биo явления вращения плоскости поляризации в кварце и некоторых жидкостях. Ф. умер, не дождавшись полной победы эфирной теории над теорией истечения; окончательный поворот в этом направлении наступил после 1830 г. и уже в сороковых годах истекшего столетия теория истечения была совершенно забыта. Работы Ф. напечатаны в мемуарах парижской академии и в 30-х годах почти все появились в переводе в «Poggеndorfs Annalen der Physik». В 1866 — 70 г. акад. издала полное собрание сочинений Ф. в 3 т. Работы Ф. по маячному делу относятся почти все к последним годам его жизни и завершились введением в франц. маяках ступенчатых стекол и особенно сильных горелок; ступенчатые стекла в настоящее время применяются везде. Биографию Ф. см. «Сочинения» Арого (русск, перев. Д. Перевощикова в 1860 г. под названием: «Биографии знаменитых астрономов, физиков и геометров», т. II, стр. 67).
ЦЕЛЬСИЙ (Celsius) Андерс (1701-44), шведский астроном и физик. Участник Лапландской экспедиции по измерению дуги меридиана (1736-37). Предложил (1742) температурную шкалу (шкала Цельсия).
ЦЕРМЕЛО (Zermelo) Эрнст (1871-1953), немецкий математик. Труды по теории множеств (т. н. аксиомы Цермело).
ШАРЛЬ (Charles) Жак Александр Сезар (1746-1823), французский физик. Труды связаны с изучением расширения газов. Установил (1787) зависимость давления идеального газа от температуры (Шарля закон). Сразу же после братьев Ж. и Э. Монгольфье построил воздушный шар из прорезиненной ткани и для его наполнения впервые использовал водород. В 1783 совершил полет на этом шаре. Изобрел ряд приборов.
ШРЕДИНГЕР (Schrodinger) Эрвин (1887-1961), австрийский физик-теоретик, один из создателей квантовой механики, иностранный член-корреспондент (1928) и иностранный почетный член (1934) АН СССР. Разработал (1926) т. н. волновую механику, сформулировал ее основное уравнение (уравнение Шредингера), доказал ее идентичность матричному варианту квантовой механики. Труды по кристаллографии, математической физике, теории относительности, биофизике. Нобелевская премия (1933, совместно с П. А. М. Дираком).
По складу ума Шредингер, подобно Планку, Эйнштейну и ряду других физиков того времени, тяготел к классическим представлениям в физике и не принял копенгагенской вероятностной интерпретации корпускулярно-волнового дуализма. В 1925 — 1926 Шредингером были выполнены работы, выдвинувшие его в первый ряд создателей волновой механики.
Наличие волновых свойств у электронов Шредингер принял как фундаментальный экспериментальный факт. Для физики волны далеко не были чем-то новым. Было хорошо известно, что в описании волн различной физической природы есть много общего — математически они описываются похожими методами (так называемыми волновыми дифференциальными уравнениями в частных производных). И здесь проявляется любопытнейшее обстоятельство, которое можно проиллюстрировать на примере звуковой волны в органной трубе. Все величины, относящиеся к звуковой волне — и распределение плотностей, и давлений, и температур и т.д. в такой «стоячей» волне являются обычными, описываемыми классической теорией, но, в то же время, существуют и определенные дискретные «резонансные» состояния: каждая из труб, в зависимости от ее длины «настроена» на определенную частоту. Это наводит на мысль, что, например, и различные квантовые дискретные состояния электронов в атомах также имеют такую же «резонансную» природу. Таким образом, волны де Бройля становятся в ряд «обычных» классических волн, а квантовые дискретные состояния — в ряд «обычных» резонансных. Конечно, для описания электронных (и других подобных им) волн необходимо располагать уравнением, такой же степени общности, как и уравнения Ньютона в классической механике, и в 1926 Шредингер и предложил такое уравнение, знаменитое уравнение Шредингера, явившееся математической основой волновой (по другой терминологии — квантовой) механики. Эта серия работ Шредингера была им опубликована в 1926 под общим названием «Квантование как задача о собственных значениях». Уравнение Шредингера заняло лидирующее место в квантовой теории, и не утратило его и поныне.
Но предложенная Шредингером «классическая» интерпретация той величины, которая определяется этим уравнением — волновой функции — не удержалась. После напряженнейших дискуссий с Бором, доводивших Шредингера до изнеможения и до отчаяния, ему пришлось признать необходимость отказа от ее классического истолкования в пользу вероятностного. Это был тяжелый удар. Перед отъездом из Копенгагена от Бора Шредингер сказал ему: «Если мы собираемся сохранить эти проклятые квантовые скачки, то мне приходится пожалеть, что я вообще занялся квантовой теорией». Негативное отношение к «копенгагенской интерпретации» квантовой теории у Шредингера (как и у Эйнштейна, Планка, де Бройля, Лауэ) так и не изменилось до конца его дней.
ЭЙЛЕР (Euler) Леонард (1707-83), математик, механик, физик и астроном. По происхождению швейцарец. В 1726 был приглашен в Петербургскую АН и переехал в 1727 в Россию. Был адъюнктом (1726), а в 1731-41 и с 1766 академиком Петербургской АН (в 1742-66 иностранный почетный член). В 1741-66 работал в Берлине, член Берлинской АН. Эйлер — ученый необычайной широты интересов и творческой продуктивности. Автор св. 800 работ по математическому анализу, дифференциальной геометрии, теории чисел, приближенным вычислениям, небесной механике, математической физике, оптике, баллистике, кораблестроению, теории музыки и других, оказавших значительное влияние на развитие науки.
ЭЙНШТЕЙН (Einstein) Альберт (1879-1955), физик-теоретик, один из основателей современной физики, иностранный член-корреспондент РАН (1922) и иностранный почетный член АН СССР (1926). Родился в Германии, с 1893 жил в Швейцарии, с 1914 в Германии, в 1933 эмигрировал в США. Создал частную (1905) и общую (1907-16) теории относительности. Автор основополагающих трудов по квантовой теории света: ввел понятие фотона (1905), установил законы фотоэффекта, основной закон фотохимии (закон Эйнштейна), предсказал (1917) индуцированное излучение. Развил статистическую теорию броуновского движения, заложив основы теории флуктуаций, создал квантовую статистику Бозе — Эйнштейна. С 1933 работал над проблемами космологии и единой теории поля. В 30-е гг. выступал против фашизма, войны, в 40-е — против применения ядерного оружия. В 1940 подписал письмо президенту США, об опасности создания ядерного оружия в Германии, которое стимулировало американские ядерные исследования. Один из инициаторов создания государства Израиль. Нобелевская премия (1921, за труды по теоретической физике, особенно за открытие законов фотоэффекта).
В 1905 вышла и другая работа Эйнштейна — «Об одной эвристической точке зрения на возникновение и превращение света». За пять лет до этого М. Планк показал, что спектральный состав излучения, испускаемого горячими телами, находит объяснение, если принять, что процесс излучения дискретен, то есть свет испускается не непрерывно, а дискретными порциями определенной энергии. Эйнштейн выдвинул предположение, что и поглощение света происходит теми же порциями и что вообще «однородный свет состоит из зерен энергии (световых квантов),... несущихся в пустом пространстве со скоростью света». Эта революционная идея позволила Эйнштейну объяснить законы фотоэффекта, в частности, факт существования «красной границы», то есть той минимальной частоты, ниже которой выбивания светом электронов из вещества вообще не происходит.
Идея квантов была применена Эйнштейном и к объяснению других явлений, например, флуоресценции, фотоионизации, загадочных вариаций удельной теплоемкости твердых тел, которые не могла описать классическая теория.
Работы Эйнштейна, посвященные квантовой теории света, были удостоены в 1921 Нобелевской премии.
Частная (специальная) теория относительности
Наибольшую известность Эйнштейну все же принесла теория относительности, изложенная им впервые в 1905, в статье «К электродинамике движущихся тел». Уже в юности Эйнштейн пытался понять, что увидел бы наблюдатель, если бы бросился со скоростью света вдогонку за световой волной. Теперь Эйнштейн решительно отверг концепцию эфира, что позволило рассматривать принцип равноправия всех инерциальных систем отсчета как универсальный, а не только ограниченный рамками механики.
Эйнштейн выдвинул удивительный и на первый взгляд парадоксальный постулат, что скорость света для всех наблюдателей, как бы они ни двигались, одинакова. Этот постулат (при выполнении некоторых дополнительных условий) приводит к полученным ранее Х. Лоренцем формулам для преобразований координат и времени при переходе из одной инерциальной системы отсчета в другую, движущуюся относительно первой. Но Лоренц рассматривал эти преобразования как вспомогательные, или фиктивные, не имеющие непосредственного отношения к реальному пространству и времени. Эйнштейн понял реальность этих преобразований, в частности, реальность относительности одновременности.
Таким образом, принцип относительности, установленный для механики еще Галилеем, был распространен на электродинамику и другие области физики. Это привело, в частности, к установлению важного универсального соотношения между массой М, энергией Е и импульсом Р, которое можно назвать одной из теоретических предпосылок использования внутриядерной энергии.
В результате совместных усилий Эйнштейна и его бывшего студенческого товарища М. Гроссмана в 1912 появилась статья «Набросок обобщенной теории относительности», а окончательная формулировка теории датируется 1915. Эта теория, по мнению многих ученых, явилась самым значительным и самым красивым теоретическим построением за всю историю физики. Опираясь на всем известный факт, что «тяжелая» и «инертная» массы равны, удалось найти принципиально новый подход к решению проблемы, поставленной еще И. Ньютоном: каков механизм передачи гравитационного взаимодействия между телами и что является переносчиком этого взаимодействия.
Ответ, предложенный Эйнштейном, был ошеломляюще неожиданным: в роли такого посредника выступала сама «геометрия» пространства — времени. Любое массивное тело, по Эйнштейну, вызывает вокруг себя «искривление» пространства, то есть делает его геометрические свойства иными, чем в геометрии Евклида, и любое другое тело, движущееся в таком «искривленном» пространстве, испытывает воздействие первого тела.
Общая теория относительности привела к предсказанию эффектов, которые вскоре получили экспериментальное подтверждение. Она позволила также сформулировать принципиально новые модели, относящиеся ко всей Вселенной, в том числе и модели нестационарной (расширяющейся) Вселенной.
ЭПИКУР (341-270 до н. э.), древнегреческий философ. С 306 — в Афинах, основал философскую школу. Философию делил на физику (учение о природе), канонику (учение о познании, в котором Эпикур придерживался сенсуализма) и этику. В физике Эпикур следовал атомистике Демокрита. Признавал бытие блаженно-безразличных богов в пространствах между бесчисленными мирами, но отрицал их вмешательство в жизнь космоса и людей. Девиз Эпикура — живи уединенно. Цель жизни — отсутствие страданий, здоровье тела и состояние безмятежности духа (атараксия); познание природы освобождает от страха смерти, суеверий и религии вообще.
ЭРСТЕД (Orsted) Ханс Кристиан (1777-1851), датский физик, иностранный почетный член Петербургской АН (1830). Труды по электричеству, акустике, молекулярной физике. Открыл (1820) магнитное действие электрического тока.
ЮНГ (Янг) (Young) Томас (1773-1829), английский ученый, один из основоположников волновой теории света. Сформулировал принцип интерференции (1801), высказал идею о поперечности световых волн (1817). Объяснил аккомодацию глаза, разработал теорию цветного зрения. Ввел характеристику упругости (модуль Юнга). Труды по акустике, астрономии, расшифровке египетских иероглифов.
Англичанин Томас Юнг был необычайно яркой личностью. Вот отрывок из его биографии, написанной Араго: «Двух лет уже умел бегло читать,...отличался необыкновенной памятью, так что в четыре года знал наизусть значительное число английских авторов и даже несколько латинских поэм, хотя и не понимал еще латинского языка... От девяти до четырнадцати лет, изучая в школе древних классиков и занимая постоянно первое место в классе, он успел в то же время выучиться по-французски, по-итальянски, по-еврейски, по-персидски и по-арабски. Французским и итальянским языком он начал заниматься, чтобы удовлетворить любопытство своего приятеля, который имел несколько книг, напечатанных в Париже и желал узнать их содержание; еврейским, чтобы читать Библию в подлиннике; персидским и арабским, чтобы решить вопрос, возникший однажды во время рекреации: есть ли между восточными языками такая же разница, как между европейскими...В то же время он имел страсть к ботанике...и предпринял попытку сам устроить микроскоп...Приобрел для этой цели ловкость в искусстве точения, но пришел было в смущение, встретив в алгебраических формулах оптики непонятные символы... Не желая, однако, отказаться от наблюдения в увеличенном виде пестиков и тычинок, нашел более простым выучиться дифференциальному счислению, чтобы понять несчастную формулу, чем послать в соседний город купить микроскоп... Занимаясь медициной в Эдинбурге, он в короткое время достиг того, что мог состязаться в ловкости с известным акробатом; в Геттингене, где оставался девять месяцев, приобрел замечательное умение вольтижировать на лошади» (и даже, можно добавить, выступал в знаменитом цирке Франкони). «Я уверен, — замечает Араго, — что из всех музыкальных инструментов не найдется двух, на которых бы Юнг не умел играть». «Гений Юнга оставил след в истории самых разнообразных отраслей человеческого знания. Творец учения об интерференции лучей, он основатель современной теории света как волнообразного движения; его пытливость одинаково привлекали чудеса светового луча, трудные вопросы физиологии зрения, как и тайны египетских иероглифов, которых он был проницательным истолкователем».
Юнг учился в Лондонском, Эдинбургском и Геттингенском университетах. Его основные научные достижения относятся к оптике. Он разделял мнение, что свет — распространение продольных колебаний во всепроникающей среде, эфире. В частности, Юнг писал в 1801 г.: «Светоносный эфир, в высокой степени разреженный и упругий, заполняет вакуум. Колебательные движения возбуждаются в этом эфире каждый раз, как тело начинает светиться». Когда Юнг обратился к оптике, уже существовал принцип Гюйгенса, который позволил качественно понять, почему и как происходят отступления от предписаний геометрической оптики. Однако, многие количественные детали явлений дифракции, т.е. огибания светом препятствий, оставались еще необъясненными. На основе этого принципа еще нельзя было ответить на вопрос, как будет выглядеть картина на экране, если на пути света имеются те или иные «оптические неоднородности». Ответ на такой вопрос впервые предлагался именно в исследованиях Юнга.
Им был сформулирован «простой и общий закон», представляющий собой принципиально новый шаг в оптике: «Везде, где две части одного и того же света попадают в глаз различными путями, либо точно, либо весьма близко по направлению, свет становится более сильным там, где разность путей есть целое кратное длины волны; и наименее сильным в промежуточных состояниях интерферирующих частей; и эта длина различна для света различных цветов». В этом отрывке впервые появился термин «интерференция», т. е. усиление или ослабление волн при их наложении. В той его части, где говорится о двух частях «одного и того же света», в нем содержится и указание на способ измерения длины световой волны.
Но Юнг не ограничивается этими блистательными открытиями. Он, дополнив принцип Гюйгенса идеей об интерференции, указал в 1803 новый подход к количественному описанию дифракции. Юнгом же была развита и теория интерференции в тонких пленках. В процитированном выше «простом и общем» законе Юнга обращают на себя внимание слова о «двух частях одного и того же света». Теперь об этом говорят как о когерентности. Две волны (и не только световые), накладываясь одна на другую, могут создавать стабильную, т.е. не меняющуюся со временем, отчетливую картину их взаимного усиления или ослабления только при условии, что близки их амплитуды (т. е. размах колебаний) и разность хода постоянна. Чтобы наблюдать интерференцию, нужны когерентные волны, а для их получения нужны особые установки, которые как бы «расщепляли» на части свет, идущий от одного источника. Упомянем лишь об одном эффектном опыте, где это осуществляется — о знаменитом опыте Юнга. Пучок параллельных лучей падает в этом опыте на непрозрачную ширму, в которой проделано маленькое отверстие. За первой ширмой помещается вторая, в которой есть два отверстия. Если рассматривать все это с позиций геометрической оптики, то на экран, находящийся за второй ширмой, свет вообще не мог бы попасть. Но в действительности он туда попадает и образует картину, которая находит естественное объяснение в волновой теории: отверстие в первой ширме можно рассматривать как центр, от которого расходится сферическая волна, и когда она достигает отверстий во второй ширме, они становятся центрами распространения двух новых сферических волн; поскольку, говоря словами Юнга, эти две волны — «...две части одного и того же света...» — их наложение и дает на экране интерференционную картину. Было придумано множество и других способов наблюдать интерференцию света: установки с двойными призмами, с разрезанными линзами, с составленными под углом зеркалами и т.д. Во всех таких установках свет сначала разделялся на два пучка, которые затем накладывались друг на друга, распространяясь в близких направлениях. Интерференция — одно из ярчайших проявлений волновых свойств, и потому ей принадлежит такое важное место в выяснении физической природы света. Юнг не только объяснил физическую природу этого явления, дал правильное истолкование колец Ньютона, но и получил первые оценки для длин световых волн. Его внимание привлекала также физиологическая оптика. Он первым выдвинул предположение, что свет и лучистое тепло имеют одинаковую физическую природу и что световые волны — поперечные. Разносторонность Юнга проявилась и в его научных трудах. Он занимался акустикой, теорией теплоты, математикой, астрономией, геофизикой, физиологией и филологией. «Модуль Юнга» — одна из важнейших величин в теории упругости — известен всем физикам и инженерам.